提问人:tomato bar 提问时间:11/18/2023 更新时间:11/18/2023 访问量:20
在 C 中使用 CUDA.NET 进行 GPU 加速图像处理的问题#
Trouble with GPU-Accelerated Image Processing using CUDA.NET in C#
问:
我正在尝试在 C# 应用程序中使用 CUDA.NET 执行 GPU 加速的图像处理。目标是根据亮度交换图像中的像素。但是,我遇到了问题,并且代码有以下错误:
Severity Code Description Project File Line Suppression State
Error CS1503 Argument 1: cannot convert from 'long' to 'uint' Image F:\projects\programming\C#\clauth app 4\Image\Image\Form1.cs 464 Active
Severity Code Description Project File Line Suppression State
Error CS0019 Operator '>>>' cannot be applied to operands of type 'dim3' and '(ManagedCuda.BasicTypes.CUdeviceptr, int, int, int)' Image F:\projects\programming\C#\clauth app 4\Image\Image\Form1.cs 467 Active
Severity Code Description Project File Line Suppression State
Error CS1061 'CudaDeviceVariable<byte>' does not contain a definition for 'ToHost' and no accessible extension method 'ToHost' accepting a first argument of type 'CudaDeviceVariable<byte>' could be found (are you missing a using directive or an assembly reference?) Image F:\projects\programming\C#\clauth app 4\Image\Image\Form1.cs 470 Active
Severity Code Description Project File Line Suppression State
Error CS0214 Pointers and fixed size buffers may only be used in an unsafe context Image F:\projects\programming\C#\clauth app 4\Image\Image\Form1.cs 504 Active
Severity Code Description Project File Line Suppression State
Error CS0103 The name 'blockDim' does not exist in the current context Image F:\projects\programming\C#\clauth app 4\Image\Image\Form1.cs 489 Active
下面是代码的简化版本:
using System;
using System.Drawing;
using ManagedCuda;
class Program
{
static void Main()
{
// Load your image using Bitmap
Bitmap inputImage = new Bitmap("input.jpg");
// Initialize CUDA
CudaContext ctx = new CudaContext();
// Allocate GPU memory for image data
CudaDeviceVariable<byte> gpuImage = new CudaDeviceVariable<byte>(inputImage.Width * inputImage.Height * 3);
// Copy image data to GPU
gpuImage.CopyToDevice(ImageToByteArray(inputImage));
// Define grid and block dimensions
dim3 blockDim = new dim3(16, 16);
dim3 gridDim = new dim3((inputImage.Width + blockDim.x - 1) / blockDim.x, (inputImage.Height + blockDim.y - 1) / blockDim.y);
// Launch the CUDA kernel for image processing
ImageProcessingKernel<<<gridDim, blockDim>>>(gpuImage.DevicePointer, inputImage.Width, inputImage.Height, 10);
// Copy results back to CPU
byte[] result = gpuImage.ToHost();
// Clean up resources
gpuImage.Dispose();
ctx.Dispose();
// Display or save the processed image
Bitmap outputImage = ByteArrayToImage(result, inputImage.Width, inputImage.Height);
outputImage.Save("output.jpg");
}
static void ImageProcessingKernel(byte* image, int width, int height, int value10)
{
// CUDA kernel code for image processing
// Each thread handles a portion of the image data
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < width - value10 && y < height)
{
int index1 = (y * width + x) * 3;
int index2 = (y * width + (x + value10)) * 3;
// Perform the pixel swap based on brightness (simplified logic)
if ((int)(image[index2] + image[index2 + 1] + image[index2 + 2]) <
(int)(image[index1] + image[index1 + 1] + image[index1 + 2]))
{
// Swap pixels
for (int i = 0; i < 3; i++)
{
byte temp = image[index1 + i];
image[index1 + i] = image[index2 + i];
image[index2 + i] = temp;
}
}
}
}
static byte[] ImageToByteArray(Bitmap image)
{
// Convert a Bitmap to a byte array
// Note: This is a simplistic conversion and might not cover all cases
var converter = new ImageConverter();
return (byte[])converter.ConvertTo(image, typeof(byte[]));
}
static Bitmap ByteArrayToImage(byte[] byteArray, int width, int height)
{
// Convert a byte array to a Bitmap
// Note: This is a simplistic conversion and might not cover all cases
var converter = new ImageConverter();
return (Bitmap)converter.ConvertFrom(byteArray);
}
}
任何指导或建议将不胜感激!谢谢。
答: 暂无答案
评论