提问人:Dan Goldstein 提问时间:8/19/2009 最后编辑:BraiamDan Goldstein 更新时间:10/24/2023 访问量:1778093
如何连接(合并)数据框(内部、外部、左侧、右侧)
How to join (merge) data frames (inner, outer, left, right)
问:
给定两个数据帧:
df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))
df2 = data.frame(CustomerId = c(2, 4, 6), State = c(rep("Alabama", 2), rep("Ohio", 1)))
df1
# CustomerId Product
# 1 Toaster
# 2 Toaster
# 3 Toaster
# 4 Radio
# 5 Radio
# 6 Radio
df2
# CustomerId State
# 2 Alabama
# 4 Alabama
# 6 Ohio
如何进行数据库样式,即sql样式的连接?也就是说,我如何获得:
- 和的内部联接 :
仅返回左表在右表中具有匹配键的行。df1
df2
- 和的外部联接:
返回两个表中的所有行,从左侧联接在右表中具有匹配键的记录。df1
df2
- 和
的左外联接(或简称为左联接) 返回左表中的所有行,以及右表中具有匹配键的任何行。df1
df2
- 和 的右外联接 返回
右表中的所有行,以及左表中具有匹配键的任何行。df1
df2
额外积分:
如何做SQL样式选择语句?
答:
在 R Wiki 上有一些很好的示例。我在这里偷几个:
Merge 方法
由于您的键名称相同,因此执行内部连接的捷径是 merge():
merge(df1, df2)
可以使用“all”关键字创建完整的内部联接(两个表中的所有记录):
merge(df1, df2, all=TRUE)
DF1 和 DF2 的左外连接:
merge(df1, df2, all.x=TRUE)
DF1 和 DF2 的右外连接:
merge(df1, df2, all.y=TRUE)
你可以翻转它们,拍打它们,然后揉搓它们,以获得你询问的另外两个外部连接:)
Subscript 方法
使用下标方法在左侧与 df1 的左外连接为:
df1[,"State"]<-df2[df1[ ,"Product"], "State"]
外连接的其他组合可以通过修改左外连接下标示例来创建。(是的,我知道这相当于说“我会把它留给读者作为练习......”)
评论
通过使用函数及其可选参数:merge
内部联接:将适用于这些示例,因为 R 通过公共变量名称自动联接框架,但你很可能希望指定以确保仅匹配所需的字段。如果匹配的变量在不同的数据框中具有不同的名称,也可以使用 and 参数。merge(df1, df2)
merge(df1, df2, by = "CustomerId")
by.x
by.y
外部连接: merge(x = df1, y = df2, by = "CustomerId", all = TRUE)
左外: merge(x = df1, y = df2, by = "CustomerId", all.x = TRUE)
右外: merge(x = df1, y = df2, by = "CustomerId", all.y = TRUE)
交叉连接: merge(x = df1, y = df2, by = NULL)
与内部联接一样,你可能希望将“CustomerId”作为匹配变量显式传递给 R。我认为最好明确说明要合并的标识符;如果输入 data.frames 意外更改,则更安全,并且以后更易于阅读。
您可以通过给出一个向量来合并多个列,例如 .by
by = c("CustomerId", "OrderId")
如果要合并的列名不同,则可以指定,例如,where 是第一个数据框中的列的名称,是第二个数据框中的列的名称。(如果需要合并多个列,这些也可以是向量。by.x = "CustomerId_in_df1", by.y = "CustomerId_in_df2"
CustomerId_in_df1
CustomerId_in_df2
评论
data.table
merge(x=df1,y=df2, by.x=c("x_col1","x_col2"), by.y=c("y_col1","y_col2"))
data.table
我建议查看 Gabor Grothendieck 的 sqldf 包,它允许您用 SQL 表达这些操作。
library(sqldf)
## inner join
df3 <- sqldf("SELECT CustomerId, Product, State
FROM df1
JOIN df2 USING(CustomerID)")
## left join (substitute 'right' for right join)
df4 <- sqldf("SELECT CustomerId, Product, State
FROM df1
LEFT JOIN df2 USING(CustomerID)")
我发现 SQL 语法比它的 R 语法更简单、更自然(但这可能只是反映了我的 RDBMS 偏见)。
有关联接的详细信息,请参阅 Gabor 的 sqldf GitHub。
内部联接有 data.table 方法,它非常节省时间和内存(对于一些较大的 data.frame 是必要的):
library(data.table)
dt1 <- data.table(df1, key = "CustomerId")
dt2 <- data.table(df2, key = "CustomerId")
joined.dt1.dt.2 <- dt1[dt2]
merge
也适用于 data.tables(因为它是通用的并且调用merge.data.table
)
merge(dt1, dt2)
data.table 记录在 stackoverflow 上:
如何执行 data.table 合并操作
将外键上的 SQL 联接转换为 R data.table 语法
合并较大 data.frames R 的有效替代方案 如何在 R
中使用 data.table 进行基本的左外联接?
另一种选择是 plyr 包中的功能。[2022 年的注释:plyr 现已停用,已被 dplyr 取代。此答案描述了 dplyr 中的联接操作。join
library(plyr)
join(df1, df2,
type = "inner")
# CustomerId Product State
# 1 2 Toaster Alabama
# 2 4 Radio Alabama
# 3 6 Radio Ohio
选项 : , , , .type
inner
left
right
full
From : 与 不同,无论使用哪种连接类型,[] 都会保留 x 的顺序。?join
merge
join
评论
plyr::join
merge
data.table
data.table
nomatch = 0L
2014 年新增功能:
特别是如果您也对一般的数据操作(包括排序、过滤、子集、汇总等)感兴趣,您绝对应该看看 ,它带有各种功能,旨在促进您的工作,特别是数据帧和某些其他数据库类型。它甚至提供了一个相当复杂的 SQL 接口,甚至还有一个将(大多数)SQL 代码直接转换为 R 的函数。dplyr
dplyr 包中的四个与连接相关的函数是(引用):
inner_join(x, y, by = NULL, copy = FALSE, ...)
:返回 x 中 y 中有匹配值,以及 x 和 y 中的所有列left_join(x, y, by = NULL, copy = FALSE, ...)
:返回 x 中的所有行,以及 x 和 y 中的所有列semi_join(x, y, by = NULL, copy = FALSE, ...)
:返回 x 中具有匹配值的所有行 y,仅保留 x 中的列。anti_join(x, y, by = NULL, copy = FALSE, ...)
:返回 x 中的所有行 如果 y 中没有匹配的值,则仅保留 x 中的列
这一切都非常详细。
选择列可以通过 完成。如果这对你来说还不够SQL,那么有一个函数,你可以按原样输入SQL代码,它将执行你指定的操作,就像你一直在R中编写一样(有关更多信息,请参阅dplyr/databases小插曲)。例如,如果应用正确,将从 “hflights” dplyr 表(“tbl”)中选择所有列。select(df,"column")
sql()
sql("SELECT * FROM hflights")
评论
您也可以使用 Hadley Wickham 的出色 dplyr 包进行连接。
library(dplyr)
#make sure that CustomerId cols are both the same type
#they aren’t in the provided data (one is integer and one is double)
df1$CustomerId <- as.double(df1$CustomerId)
更改连接:使用 df2 中的匹配项向 df1 添加列
#inner
inner_join(df1, df2)
#left outer
left_join(df1, df2)
#right outer
right_join(df1, df2)
#alternate right outer
left_join(df2, df1)
#full join
full_join(df1, df2)
过滤联接:过滤掉 df1 中的行,不修改列
#keep only observations in df1 that match in df2.
semi_join(df1, df2)
#drop all observations in df1 that match in df2.
anti_join(df1, df2)
评论
CustomerId
plyr
dplyr
character
plyr
dplyr 从 0.4 开始实现了所有这些连接,包括 ,但值得注意的是,在 0.4 之前的前几个版本中,它曾经不提供outer_join
,因此在之后的很长一段时间里,有很多非常糟糕的 hacky 解决方法用户代码(您仍然可以在 SO 中找到此类代码, Kaggle 回答,那个时期的 github。因此,这个答案仍然有用。outer_join
与 Join 相关的版本亮点:
- 处理 POSIXct 类型、时区、重复项、不同因子水平。更好的错误和警告。
- 新的后缀参数用于控制重复变量名称接收的后缀 (#1296)
- 实现右连接和外连接 (#96)
- 突变联接,将新变量从一个表中的匹配行添加到另一个表中。筛选联接,根据观测值是否与另一个表中的观测值匹配来筛选一个表中的观测值。
- 现在可以按每个表中的不同变量进行left_join:df1 %>% left_join(df2, c(“var1” = “var2”))
- *_join() 不再对列名重新排序 (#324)
v0.1.3 (4/2014)
- 有inner_join、left_join、semi_join anti_join
- outer_join尚未实现,则回退是使用 base::merge() (或 plyr::join())
- 尚未实现right_join和outer_join
- 哈德利在这里提到了其他优势
- Merge 目前具有 dplyr 所没有的一个次要功能是能够像 Python pandas 那样具有单独的 by.x,by.y 列。
根据 hadley 在该问题中的评论的解决方法:
- right_join(x,y) 与 left_join(y,x) 在行数方面相同,只是列的顺序不同。轻松解决 select(new_column_order)
- outer_join基本上是 union(left_join(x, y), right_join(x, y)) - 即保留两个数据框中的所有行。
评论
dplyr
lazyeval
rlang
data.table
data.table
plyr
dplyr
data.table
在连接两个数据帧时,每个数据框有 ~100 万行,一个有 2 列,另一个有 ~20 列,我惊讶地发现速度更快。这是在dplyr v0.4中merge(..., all.x = TRUE, all.y = TRUE)
dplyr::full_join()
合并需要 ~17 秒,full_join需要 ~65 秒。
不过有一些食物,因为我通常默认使用 dplyr 来执行操作任务。
- 使用函数,我们可以选择左表或右表的变量,就像我们都熟悉SQL中的select语句一样(EX:Select a.* ...或从 .....) 中选择 b.*
merge
我们必须添加额外的代码,这些代码将从新加入的表中子集。
SQL:-
select a.* from df1 a inner join df2 b on a.CustomerId=b.CustomerId
R :-
merge(df1, df2, by.x = "CustomerId", by.y = "CustomerId")[,names(df1)]
同样的方式
SQL:-
select b.* from df1 a inner join df2 b on a.CustomerId=b.CustomerId
R :-
merge(df1, df2, by.x = "CustomerId", by.y = "CustomerId")[,names(df2)]
更新了用于联接数据集的 data.table 方法。请参阅以下示例,了解每种类型的联接。有两种方法,一种是将第二个 data.table 作为第一个参数传递给子集,另一种方法是使用调度到快速 data.table 方法的函数。[.data.table
merge
df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))
df2 = data.frame(CustomerId = c(2L, 4L, 7L), State = c(rep("Alabama", 2), rep("Ohio", 1))) # one value changed to show full outer join
library(data.table)
dt1 = as.data.table(df1)
dt2 = as.data.table(df2)
setkey(dt1, CustomerId)
setkey(dt2, CustomerId)
# right outer join keyed data.tables
dt1[dt2]
setkey(dt1, NULL)
setkey(dt2, NULL)
# right outer join unkeyed data.tables - use `on` argument
dt1[dt2, on = "CustomerId"]
# left outer join - swap dt1 with dt2
dt2[dt1, on = "CustomerId"]
# inner join - use `nomatch` argument
dt1[dt2, nomatch=NULL, on = "CustomerId"]
# anti join - use `!` operator
dt1[!dt2, on = "CustomerId"]
# inner join - using merge method
merge(dt1, dt2, by = "CustomerId")
# full outer join
merge(dt1, dt2, by = "CustomerId", all = TRUE)
# see ?merge.data.table arguments for other cases
下面的基准测试基于 R、sqldf、dplyr 和 data.table。
基准测试未按键/未编制索引的数据集。
基准测试是在 50M-1 行数据集上执行的,连接列上有 50M-2 的公共值,因此可以测试每个场景(内部、左侧、右侧、完整),并且执行连接仍然不是一件容易的事。它是强调连接算法的连接类型。时间截至 、 、 。sqldf:0.4.11
dplyr:0.7.8
data.table:1.12.0
# inner
Unit: seconds
expr min lq mean median uq max neval
base 111.66266 111.66266 111.66266 111.66266 111.66266 111.66266 1
sqldf 624.88388 624.88388 624.88388 624.88388 624.88388 624.88388 1
dplyr 51.91233 51.91233 51.91233 51.91233 51.91233 51.91233 1
DT 10.40552 10.40552 10.40552 10.40552 10.40552 10.40552 1
# left
Unit: seconds
expr min lq mean median uq max
base 142.782030 142.782030 142.782030 142.782030 142.782030 142.782030
sqldf 613.917109 613.917109 613.917109 613.917109 613.917109 613.917109
dplyr 49.711912 49.711912 49.711912 49.711912 49.711912 49.711912
DT 9.674348 9.674348 9.674348 9.674348 9.674348 9.674348
# right
Unit: seconds
expr min lq mean median uq max
base 122.366301 122.366301 122.366301 122.366301 122.366301 122.366301
sqldf 611.119157 611.119157 611.119157 611.119157 611.119157 611.119157
dplyr 50.384841 50.384841 50.384841 50.384841 50.384841 50.384841
DT 9.899145 9.899145 9.899145 9.899145 9.899145 9.899145
# full
Unit: seconds
expr min lq mean median uq max neval
base 141.79464 141.79464 141.79464 141.79464 141.79464 141.79464 1
dplyr 94.66436 94.66436 94.66436 94.66436 94.66436 94.66436 1
DT 21.62573 21.62573 21.62573 21.62573 21.62573 21.62573 1
请注意,您可以使用以下命令执行其他类型的联接:
- 联接时更新 - 如果要从另一个表中查找到主表
的值 - 联接时聚合 - 如果要在要联接的键上聚合,则不必具体化所有联接结果
- 重叠联接 - 如果要按范围合并
- 滚动联接 - 如果您希望 merge 能够通过向前或向后滚动来匹配前/后行的值 - 非等价联接
- 如果您的连接条件不相等data.table
重现代码:
library(microbenchmark)
library(sqldf)
library(dplyr)
library(data.table)
sapply(c("sqldf","dplyr","data.table"), packageVersion, simplify=FALSE)
n = 5e7
set.seed(108)
df1 = data.frame(x=sample(n,n-1L), y1=rnorm(n-1L))
df2 = data.frame(x=sample(n,n-1L), y2=rnorm(n-1L))
dt1 = as.data.table(df1)
dt2 = as.data.table(df2)
mb = list()
# inner join
microbenchmark(times = 1L,
base = merge(df1, df2, by = "x"),
sqldf = sqldf("SELECT * FROM df1 INNER JOIN df2 ON df1.x = df2.x"),
dplyr = inner_join(df1, df2, by = "x"),
DT = dt1[dt2, nomatch=NULL, on = "x"]) -> mb$inner
# left outer join
microbenchmark(times = 1L,
base = merge(df1, df2, by = "x", all.x = TRUE),
sqldf = sqldf("SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.x = df2.x"),
dplyr = left_join(df1, df2, by = c("x"="x")),
DT = dt2[dt1, on = "x"]) -> mb$left
# right outer join
microbenchmark(times = 1L,
base = merge(df1, df2, by = "x", all.y = TRUE),
sqldf = sqldf("SELECT * FROM df2 LEFT OUTER JOIN df1 ON df2.x = df1.x"),
dplyr = right_join(df1, df2, by = "x"),
DT = dt1[dt2, on = "x"]) -> mb$right
# full outer join
microbenchmark(times = 1L,
base = merge(df1, df2, by = "x", all = TRUE),
dplyr = full_join(df1, df2, by = "x"),
DT = merge(dt1, dt2, by = "x", all = TRUE)) -> mb$full
lapply(mb, print) -> nul
评论
on =
on
merge.data.table
sort = TRUE
data.table
对于具有基数的左连接或具有基数的右连接,可以将连接器(表)中的单边列直接分配给被连接者(表),从而避免创建全新的数据表。这需要将 joiner 的键列与 joiner 进行匹配,并相应地对 joiner 的行进行索引 + 排序以进行分配。0..*:0..1
0..1:0..*
0..1
0..*
如果键是单列,那么我们可以使用对 match()
的单个调用来进行匹配。这就是我将在本答案中介绍的情况。
下面是一个基于 OP 的示例,不同之处在于我添加了一个 id 为 7 的额外行,以测试连接器中键不匹配的情况。这实际上是左连接:df2
df1
df2
df1 <- data.frame(CustomerId=1:6,Product=c(rep('Toaster',3L),rep('Radio',3L)));
df2 <- data.frame(CustomerId=c(2L,4L,6L,7L),State=c(rep('Alabama',2L),'Ohio','Texas'));
df1[names(df2)[-1L]] <- df2[match(df1[,1L],df2[,1L]),-1L];
df1;
## CustomerId Product State
## 1 1 Toaster <NA>
## 2 2 Toaster Alabama
## 3 3 Toaster <NA>
## 4 4 Radio Alabama
## 5 5 Radio <NA>
## 6 6 Radio Ohio
在上面,我硬编码了一个假设,即键列是两个输入表的第一列。我认为,一般来说,这并不是一个不合理的假设,因为如果你有一个带有键列的 data.frame,那么如果从一开始就没有将其设置为 data.frame 的第一列,那就太奇怪了。您可以随时对列进行重新排序以使其如此。这个假设的一个有利结果是,键列的名称不必进行硬编码,尽管我认为它只是用另一个假设替换一个假设。简洁是整数索引的另一个优点,也是速度。在下面的基准测试中,我将更改实现,以使用字符串名称索引来匹配竞争实现。
我认为这是一个特别合适的解决方案,如果你有几个表你想在一个大表上留下连接。为每次合并重复重建整个表是不必要的,而且效率低下。
另一方面,如果出于任何原因需要加入者通过此操作保持不变,则不能使用此解决方案,因为它直接修改了加入者。尽管在这种情况下,您可以简单地制作副本并在副本上执行就地分配。
顺便说一句,我简要介绍了多列键的可能匹配解决方案。不幸的是,我找到的唯一匹配解决方案是:
- 串联效率低下。例如,或与 相同的想法。
match(interaction(df1$a,df1$b),interaction(df2$a,df2$b))
paste()
- 低效的笛卡尔连词,例如.
outer(df1$a,df2$a,`==`) & outer(df1$b,df2$b,`==`)
- 基本 R 和等效的基于包的合并函数,它们始终分配一个新表以返回合并结果,因此不适合基于就地分配的解决方案。
merge()
例如,请参阅匹配不同数据帧上的多个列并获取其他列作为结果,将两列与其他两个列匹配,在多个列上匹配,以及我最初提出就地解决方案的这个问题的欺骗,在 R 中将两个具有不同行数的数据帧组合在一起。
标杆
我决定做自己的基准测试,看看就地分配方法与这个问题中提供的其他解决方案相比如何。
测试代码:
library(microbenchmark);
library(data.table);
library(sqldf);
library(plyr);
library(dplyr);
solSpecs <- list(
merge=list(testFuncs=list(
inner=function(df1,df2,key) merge(df1,df2,key),
left =function(df1,df2,key) merge(df1,df2,key,all.x=T),
right=function(df1,df2,key) merge(df1,df2,key,all.y=T),
full =function(df1,df2,key) merge(df1,df2,key,all=T)
)),
data.table.unkeyed=list(argSpec='data.table.unkeyed',testFuncs=list(
inner=function(dt1,dt2,key) dt1[dt2,on=key,nomatch=0L,allow.cartesian=T],
left =function(dt1,dt2,key) dt2[dt1,on=key,allow.cartesian=T],
right=function(dt1,dt2,key) dt1[dt2,on=key,allow.cartesian=T],
full =function(dt1,dt2,key) merge(dt1,dt2,key,all=T,allow.cartesian=T) ## calls merge.data.table()
)),
data.table.keyed=list(argSpec='data.table.keyed',testFuncs=list(
inner=function(dt1,dt2) dt1[dt2,nomatch=0L,allow.cartesian=T],
left =function(dt1,dt2) dt2[dt1,allow.cartesian=T],
right=function(dt1,dt2) dt1[dt2,allow.cartesian=T],
full =function(dt1,dt2) merge(dt1,dt2,all=T,allow.cartesian=T) ## calls merge.data.table()
)),
sqldf.unindexed=list(testFuncs=list( ## note: must pass connection=NULL to avoid running against the live DB connection, which would result in collisions with the residual tables from the last query upload
inner=function(df1,df2,key) sqldf(paste0('select * from df1 inner join df2 using(',paste(collapse=',',key),')'),connection=NULL),
left =function(df1,df2,key) sqldf(paste0('select * from df1 left join df2 using(',paste(collapse=',',key),')'),connection=NULL),
right=function(df1,df2,key) sqldf(paste0('select * from df2 left join df1 using(',paste(collapse=',',key),')'),connection=NULL) ## can't do right join proper, not yet supported; inverted left join is equivalent
##full =function(df1,df2,key) sqldf(paste0('select * from df1 full join df2 using(',paste(collapse=',',key),')'),connection=NULL) ## can't do full join proper, not yet supported; possible to hack it with a union of left joins, but too unreasonable to include in testing
)),
sqldf.indexed=list(testFuncs=list( ## important: requires an active DB connection with preindexed main.df1 and main.df2 ready to go; arguments are actually ignored
inner=function(df1,df2,key) sqldf(paste0('select * from main.df1 inner join main.df2 using(',paste(collapse=',',key),')')),
left =function(df1,df2,key) sqldf(paste0('select * from main.df1 left join main.df2 using(',paste(collapse=',',key),')')),
right=function(df1,df2,key) sqldf(paste0('select * from main.df2 left join main.df1 using(',paste(collapse=',',key),')')) ## can't do right join proper, not yet supported; inverted left join is equivalent
##full =function(df1,df2,key) sqldf(paste0('select * from main.df1 full join main.df2 using(',paste(collapse=',',key),')')) ## can't do full join proper, not yet supported; possible to hack it with a union of left joins, but too unreasonable to include in testing
)),
plyr=list(testFuncs=list(
inner=function(df1,df2,key) join(df1,df2,key,'inner'),
left =function(df1,df2,key) join(df1,df2,key,'left'),
right=function(df1,df2,key) join(df1,df2,key,'right'),
full =function(df1,df2,key) join(df1,df2,key,'full')
)),
dplyr=list(testFuncs=list(
inner=function(df1,df2,key) inner_join(df1,df2,key),
left =function(df1,df2,key) left_join(df1,df2,key),
right=function(df1,df2,key) right_join(df1,df2,key),
full =function(df1,df2,key) full_join(df1,df2,key)
)),
in.place=list(testFuncs=list(
left =function(df1,df2,key) { cns <- setdiff(names(df2),key); df1[cns] <- df2[match(df1[,key],df2[,key]),cns]; df1; },
right=function(df1,df2,key) { cns <- setdiff(names(df1),key); df2[cns] <- df1[match(df2[,key],df1[,key]),cns]; df2; }
))
);
getSolTypes <- function() names(solSpecs);
getJoinTypes <- function() unique(unlist(lapply(solSpecs,function(x) names(x$testFuncs))));
getArgSpec <- function(argSpecs,key=NULL) if (is.null(key)) argSpecs$default else argSpecs[[key]];
initSqldf <- function() {
sqldf(); ## creates sqlite connection on first run, cleans up and closes existing connection otherwise
if (exists('sqldfInitFlag',envir=globalenv(),inherits=F) && sqldfInitFlag) { ## false only on first run
sqldf(); ## creates a new connection
} else {
assign('sqldfInitFlag',T,envir=globalenv()); ## set to true for the one and only time
}; ## end if
invisible();
}; ## end initSqldf()
setUpBenchmarkCall <- function(argSpecs,joinType,solTypes=getSolTypes(),env=parent.frame()) {
## builds and returns a list of expressions suitable for passing to the list argument of microbenchmark(), and assigns variables to resolve symbol references in those expressions
callExpressions <- list();
nms <- character();
for (solType in solTypes) {
testFunc <- solSpecs[[solType]]$testFuncs[[joinType]];
if (is.null(testFunc)) next; ## this join type is not defined for this solution type
testFuncName <- paste0('tf.',solType);
assign(testFuncName,testFunc,envir=env);
argSpecKey <- solSpecs[[solType]]$argSpec;
argSpec <- getArgSpec(argSpecs,argSpecKey);
argList <- setNames(nm=names(argSpec$args),vector('list',length(argSpec$args)));
for (i in seq_along(argSpec$args)) {
argName <- paste0('tfa.',argSpecKey,i);
assign(argName,argSpec$args[[i]],envir=env);
argList[[i]] <- if (i%in%argSpec$copySpec) call('copy',as.symbol(argName)) else as.symbol(argName);
}; ## end for
callExpressions[[length(callExpressions)+1L]] <- do.call(call,c(list(testFuncName),argList),quote=T);
nms[length(nms)+1L] <- solType;
}; ## end for
names(callExpressions) <- nms;
callExpressions;
}; ## end setUpBenchmarkCall()
harmonize <- function(res) {
res <- as.data.frame(res); ## coerce to data.frame
for (ci in which(sapply(res,is.factor))) res[[ci]] <- as.character(res[[ci]]); ## coerce factor columns to character
for (ci in which(sapply(res,is.logical))) res[[ci]] <- as.integer(res[[ci]]); ## coerce logical columns to integer (works around sqldf quirk of munging logicals to integers)
##for (ci in which(sapply(res,inherits,'POSIXct'))) res[[ci]] <- as.double(res[[ci]]); ## coerce POSIXct columns to double (works around sqldf quirk of losing POSIXct class) ----- POSIXct doesn't work at all in sqldf.indexed
res <- res[order(names(res))]; ## order columns
res <- res[do.call(order,res),]; ## order rows
res;
}; ## end harmonize()
checkIdentical <- function(argSpecs,solTypes=getSolTypes()) {
for (joinType in getJoinTypes()) {
callExpressions <- setUpBenchmarkCall(argSpecs,joinType,solTypes);
if (length(callExpressions)<2L) next;
ex <- harmonize(eval(callExpressions[[1L]]));
for (i in seq(2L,len=length(callExpressions)-1L)) {
y <- harmonize(eval(callExpressions[[i]]));
if (!isTRUE(all.equal(ex,y,check.attributes=F))) {
ex <<- ex;
y <<- y;
solType <- names(callExpressions)[i];
stop(paste0('non-identical: ',solType,' ',joinType,'.'));
}; ## end if
}; ## end for
}; ## end for
invisible();
}; ## end checkIdentical()
testJoinType <- function(argSpecs,joinType,solTypes=getSolTypes(),metric=NULL,times=100L) {
callExpressions <- setUpBenchmarkCall(argSpecs,joinType,solTypes);
bm <- microbenchmark(list=callExpressions,times=times);
if (is.null(metric)) return(bm);
bm <- summary(bm);
res <- setNames(nm=names(callExpressions),bm[[metric]]);
attr(res,'unit') <- attr(bm,'unit');
res;
}; ## end testJoinType()
testAllJoinTypes <- function(argSpecs,solTypes=getSolTypes(),metric=NULL,times=100L) {
joinTypes <- getJoinTypes();
resList <- setNames(nm=joinTypes,lapply(joinTypes,function(joinType) testJoinType(argSpecs,joinType,solTypes,metric,times)));
if (is.null(metric)) return(resList);
units <- unname(unlist(lapply(resList,attr,'unit')));
res <- do.call(data.frame,c(list(join=joinTypes),setNames(nm=solTypes,rep(list(rep(NA_real_,length(joinTypes))),length(solTypes))),list(unit=units,stringsAsFactors=F)));
for (i in seq_along(resList)) res[i,match(names(resList[[i]]),names(res))] <- resList[[i]];
res;
}; ## end testAllJoinTypes()
testGrid <- function(makeArgSpecsFunc,sizes,overlaps,solTypes=getSolTypes(),joinTypes=getJoinTypes(),metric='median',times=100L) {
res <- expand.grid(size=sizes,overlap=overlaps,joinType=joinTypes,stringsAsFactors=F);
res[solTypes] <- NA_real_;
res$unit <- NA_character_;
for (ri in seq_len(nrow(res))) {
size <- res$size[ri];
overlap <- res$overlap[ri];
joinType <- res$joinType[ri];
argSpecs <- makeArgSpecsFunc(size,overlap);
checkIdentical(argSpecs,solTypes);
cur <- testJoinType(argSpecs,joinType,solTypes,metric,times);
res[ri,match(names(cur),names(res))] <- cur;
res$unit[ri] <- attr(cur,'unit');
}; ## end for
res;
}; ## end testGrid()
下面是基于我之前演示的 OP 的示例基准测试:
## OP's example, supplemented with a non-matching row in df2
argSpecs <- list(
default=list(copySpec=1:2,args=list(
df1 <- data.frame(CustomerId=1:6,Product=c(rep('Toaster',3L),rep('Radio',3L))),
df2 <- data.frame(CustomerId=c(2L,4L,6L,7L),State=c(rep('Alabama',2L),'Ohio','Texas')),
'CustomerId'
)),
data.table.unkeyed=list(copySpec=1:2,args=list(
as.data.table(df1),
as.data.table(df2),
'CustomerId'
)),
data.table.keyed=list(copySpec=1:2,args=list(
setkey(as.data.table(df1),CustomerId),
setkey(as.data.table(df2),CustomerId)
))
);
## prepare sqldf
initSqldf();
sqldf('create index df1_key on df1(CustomerId);'); ## upload and create an sqlite index on df1
sqldf('create index df2_key on df2(CustomerId);'); ## upload and create an sqlite index on df2
checkIdentical(argSpecs);
testAllJoinTypes(argSpecs,metric='median');
## join merge data.table.unkeyed data.table.keyed sqldf.unindexed sqldf.indexed plyr dplyr in.place unit
## 1 inner 644.259 861.9345 923.516 9157.752 1580.390 959.2250 270.9190 NA microseconds
## 2 left 713.539 888.0205 910.045 8820.334 1529.714 968.4195 270.9185 224.3045 microseconds
## 3 right 1221.804 909.1900 923.944 8930.668 1533.135 1063.7860 269.8495 218.1035 microseconds
## 4 full 1302.203 3107.5380 3184.729 NA NA 1593.6475 270.7055 NA microseconds
在这里,我对随机输入数据进行基准测试,尝试两个输入表之间的不同比例和不同键重叠模式。此基准测试仍仅限于单列整数键的情况。此外,为了确保就地解决方案适用于同一表的左联接和右联接,所有随机测试数据都使用基数。这是通过在生成第二个 data.frame 的键列时在不替换第一个 data.frame 的键列的情况下进行采样来实现的。0..1:0..1
makeArgSpecs.singleIntegerKey.optionalOneToOne <- function(size,overlap) {
com <- as.integer(size*overlap);
argSpecs <- list(
default=list(copySpec=1:2,args=list(
df1 <- data.frame(id=sample(size),y1=rnorm(size),y2=rnorm(size)),
df2 <- data.frame(id=sample(c(if (com>0L) sample(df1$id,com) else integer(),seq(size+1L,len=size-com))),y3=rnorm(size),y4=rnorm(size)),
'id'
)),
data.table.unkeyed=list(copySpec=1:2,args=list(
as.data.table(df1),
as.data.table(df2),
'id'
)),
data.table.keyed=list(copySpec=1:2,args=list(
setkey(as.data.table(df1),id),
setkey(as.data.table(df2),id)
))
);
## prepare sqldf
initSqldf();
sqldf('create index df1_key on df1(id);'); ## upload and create an sqlite index on df1
sqldf('create index df2_key on df2(id);'); ## upload and create an sqlite index on df2
argSpecs;
}; ## end makeArgSpecs.singleIntegerKey.optionalOneToOne()
## cross of various input sizes and key overlaps
sizes <- c(1e1L,1e3L,1e6L);
overlaps <- c(0.99,0.5,0.01);
system.time({ res <- testGrid(makeArgSpecs.singleIntegerKey.optionalOneToOne,sizes,overlaps); });
## user system elapsed
## 22024.65 12308.63 34493.19
我编写了一些代码来创建上述结果的对数-对数图。我为每个重叠百分比生成了一个单独的图。它有点杂乱无章,但我喜欢在同一图中表示所有解决方案类型和连接类型。
我使用样条插值来显示每个解/连接类型组合的平滑曲线,并使用单独的 pch 符号绘制。连接类型由 pch 符号捕获,使用点表示内侧,使用左尖括号和右尖括号表示左尖括号和右尖括号,使用菱形表示完整。解决方案类型由图例中所示的颜色捕获。
plotRes <- function(res,titleFunc,useFloor=F) {
solTypes <- setdiff(names(res),c('size','overlap','joinType','unit')); ## derive from res
normMult <- c(microseconds=1e-3,milliseconds=1); ## normalize to milliseconds
joinTypes <- getJoinTypes();
cols <- c(merge='purple',data.table.unkeyed='blue',data.table.keyed='#00DDDD',sqldf.unindexed='brown',sqldf.indexed='orange',plyr='red',dplyr='#00BB00',in.place='magenta');
pchs <- list(inner=20L,left='<',right='>',full=23L);
cexs <- c(inner=0.7,left=1,right=1,full=0.7);
NP <- 60L;
ord <- order(decreasing=T,colMeans(res[res$size==max(res$size),solTypes],na.rm=T));
ymajors <- data.frame(y=c(1,1e3),label=c('1ms','1s'),stringsAsFactors=F);
for (overlap in unique(res$overlap)) {
x1 <- res[res$overlap==overlap,];
x1[solTypes] <- x1[solTypes]*normMult[x1$unit]; x1$unit <- NULL;
xlim <- c(1e1,max(x1$size));
xticks <- 10^seq(log10(xlim[1L]),log10(xlim[2L]));
ylim <- c(1e-1,10^((if (useFloor) floor else ceiling)(log10(max(x1[solTypes],na.rm=T))))); ## use floor() to zoom in a little more, only sqldf.unindexed will break above, but xpd=NA will keep it visible
yticks <- 10^seq(log10(ylim[1L]),log10(ylim[2L]));
yticks.minor <- rep(yticks[-length(yticks)],each=9L)*1:9;
plot(NA,xlim=xlim,ylim=ylim,xaxs='i',yaxs='i',axes=F,xlab='size (rows)',ylab='time (ms)',log='xy');
abline(v=xticks,col='lightgrey');
abline(h=yticks.minor,col='lightgrey',lty=3L);
abline(h=yticks,col='lightgrey');
axis(1L,xticks,parse(text=sprintf('10^%d',as.integer(log10(xticks)))));
axis(2L,yticks,parse(text=sprintf('10^%d',as.integer(log10(yticks)))),las=1L);
axis(4L,ymajors$y,ymajors$label,las=1L,tick=F,cex.axis=0.7,hadj=0.5);
for (joinType in rev(joinTypes)) { ## reverse to draw full first, since it's larger and would be more obtrusive if drawn last
x2 <- x1[x1$joinType==joinType,];
for (solType in solTypes) {
if (any(!is.na(x2[[solType]]))) {
xy <- spline(x2$size,x2[[solType]],xout=10^(seq(log10(x2$size[1L]),log10(x2$size[nrow(x2)]),len=NP)));
points(xy$x,xy$y,pch=pchs[[joinType]],col=cols[solType],cex=cexs[joinType],xpd=NA);
}; ## end if
}; ## end for
}; ## end for
## custom legend
## due to logarithmic skew, must do all distance calcs in inches, and convert to user coords afterward
## the bottom-left corner of the legend will be defined in normalized figure coords, although we can convert to inches immediately
leg.cex <- 0.7;
leg.x.in <- grconvertX(0.275,'nfc','in');
leg.y.in <- grconvertY(0.6,'nfc','in');
leg.x.user <- grconvertX(leg.x.in,'in');
leg.y.user <- grconvertY(leg.y.in,'in');
leg.outpad.w.in <- 0.1;
leg.outpad.h.in <- 0.1;
leg.midpad.w.in <- 0.1;
leg.midpad.h.in <- 0.1;
leg.sol.w.in <- max(strwidth(solTypes,'in',leg.cex));
leg.sol.h.in <- max(strheight(solTypes,'in',leg.cex))*1.5; ## multiplication factor for greater line height
leg.join.w.in <- max(strheight(joinTypes,'in',leg.cex))*1.5; ## ditto
leg.join.h.in <- max(strwidth(joinTypes,'in',leg.cex));
leg.main.w.in <- leg.join.w.in*length(joinTypes);
leg.main.h.in <- leg.sol.h.in*length(solTypes);
leg.x2.user <- grconvertX(leg.x.in+leg.outpad.w.in*2+leg.main.w.in+leg.midpad.w.in+leg.sol.w.in,'in');
leg.y2.user <- grconvertY(leg.y.in+leg.outpad.h.in*2+leg.main.h.in+leg.midpad.h.in+leg.join.h.in,'in');
leg.cols.x.user <- grconvertX(leg.x.in+leg.outpad.w.in+leg.join.w.in*(0.5+seq(0L,length(joinTypes)-1L)),'in');
leg.lines.y.user <- grconvertY(leg.y.in+leg.outpad.h.in+leg.main.h.in-leg.sol.h.in*(0.5+seq(0L,length(solTypes)-1L)),'in');
leg.sol.x.user <- grconvertX(leg.x.in+leg.outpad.w.in+leg.main.w.in+leg.midpad.w.in,'in');
leg.join.y.user <- grconvertY(leg.y.in+leg.outpad.h.in+leg.main.h.in+leg.midpad.h.in,'in');
rect(leg.x.user,leg.y.user,leg.x2.user,leg.y2.user,col='white');
text(leg.sol.x.user,leg.lines.y.user,solTypes[ord],cex=leg.cex,pos=4L,offset=0);
text(leg.cols.x.user,leg.join.y.user,joinTypes,cex=leg.cex,pos=4L,offset=0,srt=90); ## srt rotation applies *after* pos/offset positioning
for (i in seq_along(joinTypes)) {
joinType <- joinTypes[i];
points(rep(leg.cols.x.user[i],length(solTypes)),ifelse(colSums(!is.na(x1[x1$joinType==joinType,solTypes[ord]]))==0L,NA,leg.lines.y.user),pch=pchs[[joinType]],col=cols[solTypes[ord]]);
}; ## end for
title(titleFunc(overlap));
readline(sprintf('overlap %.02f',overlap));
}; ## end for
}; ## end plotRes()
titleFunc <- function(overlap) sprintf('R merge solutions: single-column integer key, 0..1:0..1 cardinality, %d%% overlap',as.integer(overlap*100));
plotRes(res,titleFunc,T);
这是第二个更繁重的大规模基准测试,涉及关键列的数量和类型以及基数。对于此基准测试,我使用三个关键列:一个字符、一个整数和一个逻辑列,对基数没有限制(即 )。(通常,由于浮点比较的复杂性,不建议使用双精度值或复数值定义键列,而且基本上没有人使用原始类型,更不用说键列了,所以我没有将这些类型包含在键列中。此外,为了提供信息,我最初尝试通过包含一个 POSIXct 键列来使用四个键列,但由于某种原因,POSIXct 类型不能很好地与解决方案配合使用,可能是由于浮点比较异常,所以我删除了它。0..*:0..*
sqldf.indexed
makeArgSpecs.assortedKey.optionalManyToMany <- function(size,overlap,uniquePct=75) {
## number of unique keys in df1
u1Size <- as.integer(size*uniquePct/100);
## (roughly) divide u1Size into bases, so we can use expand.grid() to produce the required number of unique key values with repetitions within individual key columns
## use ceiling() to ensure we cover u1Size; will truncate afterward
u1SizePerKeyColumn <- as.integer(ceiling(u1Size^(1/3)));
## generate the unique key values for df1
keys1 <- expand.grid(stringsAsFactors=F,
idCharacter=replicate(u1SizePerKeyColumn,paste(collapse='',sample(letters,sample(4:12,1L),T))),
idInteger=sample(u1SizePerKeyColumn),
idLogical=sample(c(F,T),u1SizePerKeyColumn,T)
##idPOSIXct=as.POSIXct('2016-01-01 00:00:00','UTC')+sample(u1SizePerKeyColumn)
)[seq_len(u1Size),];
## rbind some repetitions of the unique keys; this will prepare one side of the many-to-many relationship
## also scramble the order afterward
keys1 <- rbind(keys1,keys1[sample(nrow(keys1),size-u1Size,T),])[sample(size),];
## common and unilateral key counts
com <- as.integer(size*overlap);
uni <- size-com;
## generate some unilateral keys for df2 by synthesizing outside of the idInteger range of df1
keys2 <- data.frame(stringsAsFactors=F,
idCharacter=replicate(uni,paste(collapse='',sample(letters,sample(4:12,1L),T))),
idInteger=u1SizePerKeyColumn+sample(uni),
idLogical=sample(c(F,T),uni,T)
##idPOSIXct=as.POSIXct('2016-01-01 00:00:00','UTC')+u1SizePerKeyColumn+sample(uni)
);
## rbind random keys from df1; this will complete the many-to-many relationship
## also scramble the order afterward
keys2 <- rbind(keys2,keys1[sample(nrow(keys1),com,T),])[sample(size),];
##keyNames <- c('idCharacter','idInteger','idLogical','idPOSIXct');
keyNames <- c('idCharacter','idInteger','idLogical');
## note: was going to use raw and complex type for two of the non-key columns, but data.table doesn't seem to fully support them
argSpecs <- list(
default=list(copySpec=1:2,args=list(
df1 <- cbind(stringsAsFactors=F,keys1,y1=sample(c(F,T),size,T),y2=sample(size),y3=rnorm(size),y4=replicate(size,paste(collapse='',sample(letters,sample(4:12,1L),T)))),
df2 <- cbind(stringsAsFactors=F,keys2,y5=sample(c(F,T),size,T),y6=sample(size),y7=rnorm(size),y8=replicate(size,paste(collapse='',sample(letters,sample(4:12,1L),T)))),
keyNames
)),
data.table.unkeyed=list(copySpec=1:2,args=list(
as.data.table(df1),
as.data.table(df2),
keyNames
)),
data.table.keyed=list(copySpec=1:2,args=list(
setkeyv(as.data.table(df1),keyNames),
setkeyv(as.data.table(df2),keyNames)
))
);
## prepare sqldf
initSqldf();
sqldf(paste0('create index df1_key on df1(',paste(collapse=',',keyNames),');')); ## upload and create an sqlite index on df1
sqldf(paste0('create index df2_key on df2(',paste(collapse=',',keyNames),');')); ## upload and create an sqlite index on df2
argSpecs;
}; ## end makeArgSpecs.assortedKey.optionalManyToMany()
sizes <- c(1e1L,1e3L,1e5L); ## 1e5L instead of 1e6L to respect more heavy-duty inputs
overlaps <- c(0.99,0.5,0.01);
solTypes <- setdiff(getSolTypes(),'in.place');
system.time({ res <- testGrid(makeArgSpecs.assortedKey.optionalManyToMany,sizes,overlaps,solTypes); });
## user system elapsed
## 38895.50 784.19 39745.53
生成的绘图,使用上面给出的相同绘图代码:
titleFunc <- function(overlap) sprintf('R merge solutions: character/integer/logical key, 0..*:0..* cardinality, %d%% overlap',as.integer(overlap*100));
plotRes(res,titleFunc,F);
评论
对于所有列的内部联接,您还可以使用 data.table-package 或 dplyr-package 作为不指定 -columns 的替代方法。这将给出两个数据帧之间相等的行:fintersect
intersect
merge
by
merge(df1, df2)
# V1 V2
# 1 B 2
# 2 C 3
dplyr::intersect(df1, df2)
# V1 V2
# 1 B 2
# 2 C 3
data.table::fintersect(setDT(df1), setDT(df2))
# V1 V2
# 1: B 2
# 2: C 3
示例数据:
df1 <- data.frame(V1 = LETTERS[1:4], V2 = 1:4)
df2 <- data.frame(V1 = LETTERS[2:3], V2 = 2:3)
更新联接。另一个重要的 SQL 样式联接是“更新联接”,其中使用另一个表更新(或创建)一个表中的列。
正在修改 OP 的示例表...
sales = data.frame(
CustomerId = c(1, 1, 1, 3, 4, 6),
Year = 2000:2005,
Product = c(rep("Toaster", 3), rep("Radio", 3))
)
cust = data.frame(
CustomerId = c(1, 1, 4, 6),
Year = c(2001L, 2002L, 2002L, 2002L),
State = state.name[1:4]
)
sales
# CustomerId Year Product
# 1 2000 Toaster
# 1 2001 Toaster
# 1 2002 Toaster
# 3 2003 Radio
# 4 2004 Radio
# 6 2005 Radio
cust
# CustomerId Year State
# 1 2001 Alabama
# 1 2002 Alaska
# 4 2002 Arizona
# 6 2002 Arkansas
假设我们想将客户的状态添加到购买表中,忽略年份列。使用基本 R,我们可以识别匹配的行,然后将值复制到:cust
sales
sales$State <- cust$State[ match(sales$CustomerId, cust$CustomerId) ]
# CustomerId Year Product State
# 1 2000 Toaster Alabama
# 1 2001 Toaster Alabama
# 1 2002 Toaster Alabama
# 3 2003 Radio <NA>
# 4 2004 Radio Arizona
# 6 2005 Radio Arkansas
# cleanup for the next example
sales$State <- NULL
从此处可以看出,从 customer 表中选择第一个匹配行。match
更新包含多个列的联接。当我们只在一列上联接并且对第一个匹配项感到满意时,上述方法非常有效。假设我们希望客户表中的测量年份与销售年份匹配。
正如 @bgoldst 的回答所提到的,在这种情况下,with 可能是一种选择。更直接地说,可以使用 data.table:match
interaction
library(data.table)
setDT(sales); setDT(cust)
sales[, State := cust[sales, on=.(CustomerId, Year), x.State]]
# CustomerId Year Product State
# 1: 1 2000 Toaster <NA>
# 2: 1 2001 Toaster Alabama
# 3: 1 2002 Toaster Alaska
# 4: 3 2003 Radio <NA>
# 5: 4 2004 Radio <NA>
# 6: 6 2005 Radio <NA>
# cleanup for next example
sales[, State := NULL]
滚动更新联接。或者,我们可能希望采用客户所处的最后状态:
sales[, State := cust[sales, on=.(CustomerId, Year), roll=TRUE, x.State]]
# CustomerId Year Product State
# 1: 1 2000 Toaster <NA>
# 2: 1 2001 Toaster Alabama
# 3: 1 2002 Toaster Alaska
# 4: 3 2003 Radio <NA>
# 5: 4 2004 Radio Arizona
# 6: 6 2005 Radio Arkansas
上面的三个示例都侧重于创建/添加新列。有关更新/修改现有列的示例,请参阅相关的 R 常见问题解答。
collapse
2.0 提供了另一个带有 的连接框架。它明显比任何其他选项都快。join
library(collapse)
join(
df1,
df2,
how = c("left", "right", "inner", "full", "semi", "anti")
)
评论