提问人:JamesTheAwesomeDude 提问时间:9/20/2023 最后编辑:JamesTheAwesomeDude 更新时间:9/28/2023 访问量:68
何时使用浮点运算计算 ceiling-integer-log2 失败?
When does using floating point operations to calculate ceiling-integer-log2 fail?
问:
我很好奇区分这两个函数的第一个输入是什么:
from math import *
def ilog2_ceil_alt(i: int) -> int:
# DO NOT USE THIS FUNCTION IT'S WRONG
return ceil(log2(i))
def ilog2_ceil(i: int) -> int:
# Correct
if i <= 0:
raise ValueError("math domain error")
return (i-1).bit_length()
...
显然,第一个对于某些输入来说会失败,因为在管道中通过有限值填充(对数)无限大小的整数时会出现舍入/截断错误——但是,我尝试运行这个测试代码几分钟,它没有发现问题:double
...
def test(i):
if ilog2_ceil(i) != ilog2_ceil_alt(i):
return i
def main(start=1):
import multiprocessing, itertools
p = multiprocessing.Pool()
it = p.imap_unordered(test, itertools.count(start), 100)
return next(i for i in it if i is not None)
if __name__ == '__main__':
i = main()
print("Failing case:", i)
我尝试测试各种大值,例如 和 ,但它并没有失败。2**32
2**64 + 9999
“alt”函数失败的最小(正)整数是多少?
答:
第一个问题是,整数将首先转换为朝向 0 的浮点类型(这是错误的方向!),此处的精度为 53 位。例如,如果是 253 + 1,它将转换为 2 53,您将得到53 而不是 54。ceil(log2(i))
i
i
但是,即使使用较小的值,也可能会出现另一个问题:要考虑的值是那些略大于 2 的幂的值,例如 2 n + k,小整数 k > 0,因为 log2 可能会四舍五入到整数 n(即使 log2 正确四舍五入),而此时您需要一个略大于n 的 FP 数。因此,这将给出 ,即 n 而不是 n+1。ceil(n)
现在,让我们考虑 k 的最坏情况,即 k = 1。让 p 表示精度(在您的示例中,p = 53 表示双精度,但让我们概括一下)。一个有 log2(2 n + 1) = n + log2(1 + 2−n) ≈n + 0.43·2−n。如果 n 的表示正好需要 q 位,则 ulp 将为 2q−p。为了得到预期的结果,0.43·2−n需要大于1/2 ulp,即2−n−2 ⩾ 2 q−p−1,即n ⩽ p−q−1。
由于 q = ⌈log2(n)⌉,因此条件为 n + ⌈log2(n)⌉ ⩽ p − 1。
但是由于 ⌈log2(n)⌉ 与 n 相比很小,因此 n 的最大值将是 p 的数量级,因此通过将 ⌈log2(n)⌉ 替换为 ⌈log2(p)⌉ 来得到近似条件,即 n ⩽ p − ⌈log2(p)⌉ − 1。
下面是一个使用 GNU MPFR 的 C 程序,用于查找每个精度 p 失败的第一个 n 值:
#include <stdio.h>
#include <stdlib.h>
#include <mpfr.h>
static void test (long p)
{
mpfr_t x;
mpfr_init2 (x, p);
for (long n = 1; ; n++)
{
/* i = 2^n + 1 */
mpfr_set_ui_2exp (x, 1, n, MPFR_RNDN);
mpfr_add_ui (x, x, 1, MPFR_RNDN);
mpfr_log2 (x, x, MPFR_RNDN);
mpfr_ceil (x, x);
long r = mpfr_get_si (x, MPFR_RNDN);
if (r != n + 1)
{
printf ("p = %ld, fail for n = %ld\n", p, n);
break;
}
}
mpfr_clear (x);
}
int main (int argc, char **argv)
{
long p, pmax;
if (argc != 2)
exit (1);
pmax = strtol (argv[1], NULL, 0);
for (p = 2; p <= pmax; p++)
test (p);
return 0;
}
使用参数 64,可以得到:
p = 2, fail for n = 2
p = 3, fail for n = 3
p = 4, fail for n = 4
p = 5, fail for n = 4
p = 6, fail for n = 5
p = 7, fail for n = 6
p = 8, fail for n = 7
p = 9, fail for n = 8
p = 10, fail for n = 8
p = 11, fail for n = 9
p = 12, fail for n = 10
p = 13, fail for n = 11
p = 14, fail for n = 12
p = 15, fail for n = 13
p = 16, fail for n = 14
p = 17, fail for n = 15
p = 18, fail for n = 16
p = 19, fail for n = 16
p = 20, fail for n = 17
p = 21, fail for n = 18
p = 22, fail for n = 19
p = 23, fail for n = 20
p = 24, fail for n = 21
p = 25, fail for n = 22
p = 26, fail for n = 23
p = 27, fail for n = 24
p = 28, fail for n = 25
p = 29, fail for n = 26
p = 30, fail for n = 27
p = 31, fail for n = 28
p = 32, fail for n = 29
p = 33, fail for n = 30
p = 34, fail for n = 31
p = 35, fail for n = 32
p = 36, fail for n = 32
p = 37, fail for n = 33
p = 38, fail for n = 34
p = 39, fail for n = 35
p = 40, fail for n = 36
p = 41, fail for n = 37
p = 42, fail for n = 38
p = 43, fail for n = 39
p = 44, fail for n = 40
p = 45, fail for n = 41
p = 46, fail for n = 42
p = 47, fail for n = 43
p = 48, fail for n = 44
p = 49, fail for n = 45
p = 50, fail for n = 46
p = 51, fail for n = 47
p = 52, fail for n = 48
p = 53, fail for n = 49
p = 54, fail for n = 50
p = 55, fail for n = 51
p = 56, fail for n = 52
p = 57, fail for n = 53
p = 58, fail for n = 54
p = 59, fail for n = 55
p = 60, fail for n = 56
p = 61, fail for n = 57
p = 62, fail for n = 58
p = 63, fail for n = 59
p = 64, fail for n = 60
编辑:因此,对于双精度 (p = 53),如果 log2 正确舍入(或至少具有良好的精度),则最小的失败整数为 249 + 1。
评论
双精度
用于此操作时,最低失败整数是多少?是吗?2**49 + 1
p = 52, fail for n = 48
i = 2^n + 1
test(2**(n:=48) + 1)
2**49 + 1
评论
ilog2_ceil_alt(2**49+1)