提问人:yingw 提问时间:6/28/2016 最后编辑:yingw 更新时间:6/28/2016 访问量:223
有效地多次子集 data.table
efficiently subsetting data.table multiple times
问:
我有这种格式的数据
> data = data.table(id = 1:10, date = seq(as.Date("2016-01-01"), by = 1, length = 10))
> data
id date
1: 1 2016-01-01
2: 2 2016-01-02
3: 3 2016-01-03
4: 4 2016-01-04
5: 5 2016-01-05
6: 6 2016-01-06
7: 7 2016-01-07
8: 8 2016-01-08
9: 9 2016-01-09
10: 10 2016-01-10
我还有另一个矩阵,它是我希望预制的查询/子集。
> query = data.table(id = c(1,4,7), date_start = c("2016-01-01", "2016-01-01", "2016-01-01"), date_end = c("2016-01-04", "2016-01-02", "2016-01-03"))
> query
id date_start date_end
1: 1 2016-01-01 2016-01-04
2: 4 2016-01-01 2016-01-02
3: 7 2016-01-01 2016-01-03
我想做这样的事情:
subset(data, (id == query[1] & date > date_start[1] & date < date_end[1]) |
(id == query[2] & date > date_start[2] & date < date_end[2]) |
(id == query[3] & date > date_start[3] & date < date_end[3]))
是否有自动生成子集查询而不使用 for 循环并重新绑定结果。
谢谢
答:
0赞
Hack-R
6/28/2016
#1
require(data.table)
data = data.table(id = 1:10, date = seq(as.Date("2016-01-01"), by = 1, length = 10))
query = data.table(id = c(1,4,7), date_start = c("2016-01-01", "2016-01-01",
"2016-01-01"), date_end = c("2016-01-04", "2016-01-02", "2016-01-03"))
首先,您可以加入他们:
data.full <- merge(data,query,by="id", all.x=T)
接下来,如果要排除未引用的观测值,并保留引用的观测值(如果它们落在日期范围内),则可以执行以下操作:query
data.final <- data.full[date >= date_start & date <= date_end,]
data.final
id date date_start date_end
1: 1 2016-01-01 2016-01-01 2016-01-04
或者,如果要保留未引用的记录,并保留引用的记录(如果它们落在日期范围内):query
data.final <- data.full[is.na(date_start) | (date >= date_start & date <= date_end),]
data.final
id date date_start date_end
1: 1 2016-01-01 2016-01-01 2016-01-04
2: 2 2016-01-02 NA NA
3: 3 2016-01-03 NA NA
4: 5 2016-01-05 NA NA
5: 6 2016-01-06 NA NA
6: 8 2016-01-08 NA NA
7: 9 2016-01-09 NA NA
8: 10 2016-01-10 NA NA
评论
1赞
talat
6/28/2016
里面你不需要[.data.table
data.full$
1赞
Hack-R
6/28/2016
@docendodiscimus 哦,这是真的。当我写这篇文章时,我什至没有真正考虑过它是一个 data.table。幸运的是,它仍然以这种方式工作,但您的评论是正确的。我继续更新了它。
5赞
Frank
6/28/2016
#2
如果我们稍微转换 OP 的数据以获得
library(data.table)
data = setDT(structure(list(id = 1:10, date = structure(16801:16810, class = c("IDate",
"Date")), date2 = structure(16801:16810, class = c("IDate", "Date"
))), .Names = c("id", "date", "date2"), row.names = c(NA, -10L
), class = c("data.table", "data.frame"), sorted = c("id",
"date", "date2")))
query = setDT(structure(list(id = c(1, 4, 7), date_start =
structure(c(16801L,
16801L, 16801L), class = c("IDate", "Date")), date_end = structure(c(16804L,
16802L, 16803L), class = c("IDate", "Date"))), .Names = c("id",
"date_start", "date_end"), row.names = c(NA, -3L), class = c("data.table",
"data.frame"), sorted = c("id",
"date_start", "date_end")))
...那么我们可以像foverlaps
foverlaps(data, query, nomatch=0)
# id date_start date_end date date2
# 1: 1 2016-01-01 2016-01-04 2016-01-01 2016-01-01
对于这种方法,我认为在合并之前需要采取以下步骤:
- 将所有日期都设置为 S
IDate
- 在主数据中创建额外的日期列
- 设置每个表上的键
评论
0赞
Frank
6/28/2016
欢迎任何更正。我实际上用得不多。foverlaps
3赞
Arun
6/28/2016
#3
在当前开发版本中,您可以直接执行连接,如下所示:non-equi
# data.table v1.9.7+
data[query, .(id, x.date), on=.(id, date>=date_start, date<=date_end)]
如有必要,请添加以删除结果中不匹配的行。nomatch=0L
目前是必要的,直到我弄清楚非等价联接的默认输出应该是什么样子。.(id, x.date)
评论
0赞
yingw
6/29/2016
与此相关的是,有没有办法进行查询-查询联接并删除对角线(与自身完全匹配?
评论
foverlaps(data, query, nomatch=0)
IDate
?foverlaps
?IDate