提问人:C. K. Young 提问时间:8/1/2008 最后编辑:OmGC. K. Young 更新时间:3/27/2023 访问量:69308
获得π值的最快方法是什么?
What is the fastest way to get the value of π?
问:
我正在寻找获得π价值的最快方法,作为个人挑战。更具体地说,我使用的方法不涉及使用常量,例如 ,或对数字进行硬编码。#define
M_PI
下面的程序测试了我所知道的各种方式。从理论上讲,内联组装版本是最快的选择,尽管显然不是便携式的。我已将其作为基线,以便与其他版本进行比较。在我的测试中,使用内置功能,该版本在 GCC 4.2 上是最快的,因为它会自动折叠成一个常量。指定后,版本最快。4 * atan(1)
atan(1)
-fno-builtin
atan2(0, -1)
以下是主要的测试程序():pitimes.c
#include <math.h>
#include <stdio.h>
#include <time.h>
#define ITERS 10000000
#define TESTWITH(x) { \
diff = 0.0; \
time1 = clock(); \
for (i = 0; i < ITERS; ++i) \
diff += (x) - M_PI; \
time2 = clock(); \
printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1)); \
}
static inline double
diffclock(clock_t time1, clock_t time0)
{
return (double) (time1 - time0) / CLOCKS_PER_SEC;
}
int
main()
{
int i;
clock_t time1, time2;
double diff;
/* Warmup. The atan2 case catches GCC's atan folding (which would
* optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
* is not used. */
TESTWITH(4 * atan(1))
TESTWITH(4 * atan2(1, 1))
#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
extern double fldpi();
TESTWITH(fldpi())
#endif
/* Actual tests start here. */
TESTWITH(atan2(0, -1))
TESTWITH(acos(-1))
TESTWITH(2 * asin(1))
TESTWITH(4 * atan2(1, 1))
TESTWITH(4 * atan(1))
return 0;
}
以及仅适用于 x86 和 x64 系统的内联汇编内容 ():fldpi.c
double
fldpi()
{
double pi;
asm("fldpi" : "=t" (pi));
return pi;
}
以及构建我正在测试的所有配置的构建脚本():build.sh
#!/bin/sh
gcc -O3 -Wall -c -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c -m64 -o fldpi-64.o fldpi.c
gcc -O3 -Wall -ffast-math -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm
除了在各种编译器标志之间进行测试(我也比较了 32 位和 64 位,因为优化不同),我还尝试切换测试顺序。但是,该版本仍然每次都名列前茅。atan2(0, -1)
答:
这是我在高中学到的计算圆周率技术的一般描述。
我之所以分享这个,是因为我认为它足够简单,任何人都可以无限期地记住它,而且它教会了你“蒙特卡洛”方法的概念——这是得出答案的统计方法,这些答案似乎不能立即通过随机过程推导出来。
画一个正方形,并在该正方形内刻一个象限(半圆形的四分之一)(半径等于正方形边的象限,因此它尽可能多地填充正方形)
现在向正方形扔一枚飞镖,并记录它落在哪里——也就是说,在正方形内的任何地方随机选择一个点。当然,它落在正方形内,但它在半圆内吗?记录下这个事实。
重复这个过程很多次——你会发现半圆内的点数与投掷的总点数之比,将这个比率称为 x。
由于正方形的面积是 r 乘以 r,因此可以推断出半圆的面积是 x 乘以 r 乘以 r(即 x 乘以 r 的平方)。因此,x 乘以 4 会给你圆周率。
这不是一个快速使用的方法。但这是蒙特卡罗方法的一个很好的例子。如果你环顾四周,你可能会发现许多超出你计算技能的问题可以通过这些方法解决。
评论
如前所述,蒙特卡罗方法应用了一些伟大的概念,但显然,它不是最快的,不是远景,也不是任何合理的衡量标准。此外,这完全取决于您正在寻找什么样的准确性。我所知道的最快的π是数字硬编码的那个。看看 Pi 和 Pi[PDF],有很多公式。
这是一种快速收敛的方法——每次迭代大约 14 位数字。PiFast是目前最快的应用程序,它将此公式与FFT一起使用。我只写公式,因为代码很简单。这个公式几乎是拉马努金发现的,也是丘德诺夫斯基发现的。这实际上是他计算数十亿位数字的方式——所以这不是一个可以忽视的方法。该公式将很快溢出,并且由于我们正在除以阶乘,因此延迟此类计算以删除项将是有利的。
哪里
下面是 Brent-Salamin 算法。维基百科提到,当 a 和 b “足够接近”时,(a + b)² / 4t 将是 π 的近似值。我不确定“足够接近”是什么意思,但从我的测试来看,一次迭代得到了 2 位数字,两次迭代得到了 7 位数字,三次迭代得到了 15 位数字,当然这是双精度的,所以它可能会有基于其表示的错误,真正的计算可能更准确。
let pi_2 iters =
let rec loop_ a b t p i =
if i = 0 then a,b,t,p
else
let a_n = (a +. b) /. 2.0
and b_n = sqrt (a*.b)
and p_n = 2.0 *. p in
let t_n = t -. (p *. (a -. a_n) *. (a -. a_n)) in
loop_ a_n b_n t_n p_n (i - 1)
in
let a,b,t,p = loop_ (1.0) (1.0 /. (sqrt 2.0)) (1.0/.4.0) (1.0) iters in
(a +. b) *. (a +. b) /. (4.0 *. t)
最后,一些圆周率高尔夫(800 位)怎么样?160个字符!
int a=10000,b,c=2800,d,e,f[2801],g;main(){for(;b-c;)f[b++]=a/5;for(;d=0,g=c*2;c-=14,printf("%.4d",e+d/a),e=d%a)for(b=c;d+=f[b]*a,f[b]=d%--g,d/=g--,--b;d*=b);}
评论
如果“最快”是指最快键入代码,那么这里是 golfscript 解决方案:
;''6666,-2%{2+.2/@*\/10.3??2*+}*`1000<~\;
实际上,有一整本书专门讨论计算 \pi 的快速方法:Jonathan 和 Peter Borwein 的“Pi and the AGM”(可在亚马逊上购买)。
我研究了 AGM 和相关算法:它非常有趣(尽管有时不平凡)。
请注意,要实现大多数现代算法来计算 \pi,您将需要一个多精度算术库(GMP 是一个相当不错的选择,尽管我上次使用它已经有一段时间了)。
最佳算法的时间复杂度以 O(M(n)log(n)) 为单位,其中 M(n) 是使用基于 FFT 的算法将两个 n 位整数相乘的时间复杂度 (M(n)=O(n log(n) log(log(n))),在计算 \pi 的数字时通常需要这种算法,并且这种算法在 GMP 中实现)。
请注意,尽管算法背后的数学可能不是微不足道的,但算法本身通常是几行伪代码,它们的实现通常非常简单(如果您选择不编写自己的多精度算术:-))。
BBP 公式允许您计算第 n 位数字 - 以 2(或 16)为基数 - 甚至不必费心前 n-1 位数字 :)
我真的很喜欢这个程序,因为它通过查看自己的区域来近似π。
国际奥委会 1988 : westley.c
#define _ -F<00||--F-OO--; int F=00,OO=00;main(){F_OO();printf("%1.3f\n",4.*-F/OO/OO);}F_OO() { _-_-_-_ _-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_-_-_-_-_ _-_-_-_-_-_-_-_ _-_-_-_ }
评论
--traditional-cpp
在编译时用 D 计算 PI。
( 复制自 DSource.org )
/** Calculate pi at compile time
*
* Compile with dmd -c pi.d
*/
module calcpi;
import meta.math;
import meta.conv;
/** real evaluateSeries!(real x, real metafunction!(real y, int n) term)
*
* Evaluate a power series at compile time.
*
* Given a metafunction of the form
* real term!(real y, int n),
* which gives the nth term of a convergent series at the point y
* (where the first term is n==1), and a real number x,
* this metafunction calculates the infinite sum at the point x
* by adding terms until the sum doesn't change any more.
*/
template evaluateSeries(real x, alias term, int n=1, real sumsofar=0.0)
{
static if (n>1 && sumsofar == sumsofar + term!(x, n+1)) {
const real evaluateSeries = sumsofar;
} else {
const real evaluateSeries = evaluateSeries!(x, term, n+1, sumsofar + term!(x, n));
}
}
/*** Calculate atan(x) at compile time.
*
* Uses the Maclaurin formula
* atan(z) = z - z^3/3 + Z^5/5 - Z^7/7 + ...
*/
template atan(real z)
{
const real atan = evaluateSeries!(z, atanTerm);
}
template atanTerm(real x, int n)
{
const real atanTerm = (n & 1 ? 1 : -1) * pow!(x, 2*n-1)/(2*n-1);
}
/// Machin's formula for pi
/// pi/4 = 4 atan(1/5) - atan(1/239).
pragma(msg, "PI = " ~ fcvt!(4.0 * (4*atan!(1/5.0) - atan!(1/239.0))) );
评论
这是一种“经典”方法,非常容易实现。 python(不是最快的语言)中的这个实现做到了:
from math import pi
from time import time
precision = 10**6 # higher value -> higher precision
# lower value -> higher speed
t = time()
calc = 0
for k in xrange(0, precision):
calc += ((-1)**k) / (2*k+1.)
calc *= 4. # this is just a little optimization
t = time()-t
print "Calculated: %.40f" % calc
print "Constant pi: %.40f" % pi
print "Difference: %.40f" % abs(calc-pi)
print "Time elapsed: %s" % repr(t)
您可以在此处找到更多信息。
无论如何,在 python 中获取精确的 pi 值的最快方法是:
from gmpy import pi
print pi(3000) # the rule is the same as
# the precision on the previous code
这是 gmpy pi 方法的源代码,我认为在这种情况下,代码不如注释有用:
static char doc_pi[]="\
pi(n): returns pi with n bits of precision in an mpf object\n\
";
/* This function was originally from netlib, package bmp, by
* Richard P. Brent. Paulo Cesar Pereira de Andrade converted
* it to C and used it in his LISP interpreter.
*
* Original comments:
*
* sets mp pi = 3.14159... to the available precision.
* uses the gauss-legendre algorithm.
* this method requires time o(ln(t)m(t)), so it is slower
* than mppi if m(t) = o(t**2), but would be faster for
* large t if a faster multiplication algorithm were used
* (see comments in mpmul).
* for a description of the method, see - multiple-precision
* zero-finding and the complexity of elementary function
* evaluation (by r. p. brent), in analytic computational
* complexity (edited by j. f. traub), academic press, 1976, 151-176.
* rounding options not implemented, no guard digits used.
*/
static PyObject *
Pygmpy_pi(PyObject *self, PyObject *args)
{
PympfObject *pi;
int precision;
mpf_t r_i2, r_i3, r_i4;
mpf_t ix;
ONE_ARG("pi", "i", &precision);
if(!(pi = Pympf_new(precision))) {
return NULL;
}
mpf_set_si(pi->f, 1);
mpf_init(ix);
mpf_set_ui(ix, 1);
mpf_init2(r_i2, precision);
mpf_init2(r_i3, precision);
mpf_set_d(r_i3, 0.25);
mpf_init2(r_i4, precision);
mpf_set_d(r_i4, 0.5);
mpf_sqrt(r_i4, r_i4);
for (;;) {
mpf_set(r_i2, pi->f);
mpf_add(pi->f, pi->f, r_i4);
mpf_div_ui(pi->f, pi->f, 2);
mpf_mul(r_i4, r_i2, r_i4);
mpf_sub(r_i2, pi->f, r_i2);
mpf_mul(r_i2, r_i2, r_i2);
mpf_mul(r_i2, r_i2, ix);
mpf_sub(r_i3, r_i3, r_i2);
mpf_sqrt(r_i4, r_i4);
mpf_mul_ui(ix, ix, 2);
/* Check for convergence */
if (!(mpf_cmp_si(r_i2, 0) &&
mpf_get_prec(r_i2) >= (unsigned)precision)) {
mpf_mul(pi->f, pi->f, r_i4);
mpf_div(pi->f, pi->f, r_i3);
break;
}
}
mpf_clear(ix);
mpf_clear(r_i2);
mpf_clear(r_i3);
mpf_clear(r_i4);
return (PyObject*)pi;
}
编辑:我在剪切、粘贴和缩进方面遇到了一些问题,你可以在这里找到源代码。
这个版本(在 Delphi 中)没什么特别的,但它至少比 Nick Hodge :)在他的博客上发布的版本要快。在我的机器上,进行十亿次迭代大约需要 16 秒,给出的值为 3.14159265 25879(准确部分以粗体显示)。
program calcpi;
{$APPTYPE CONSOLE}
uses
SysUtils;
var
start, finish: TDateTime;
function CalculatePi(iterations: integer): double;
var
numerator, denominator, i: integer;
sum: double;
begin
{
PI may be approximated with this formula:
4 * (1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 .......)
//}
numerator := 1;
denominator := 1;
sum := 0;
for i := 1 to iterations do begin
sum := sum + (numerator/denominator);
denominator := denominator + 2;
numerator := -numerator;
end;
Result := 4 * sum;
end;
begin
try
start := Now;
WriteLn(FloatToStr(CalculatePi(StrToInt(ParamStr(1)))));
finish := Now;
WriteLn('Seconds:' + FormatDateTime('hh:mm:ss.zz',finish-start));
except
on E:Exception do
Writeln(E.Classname, ': ', E.Message);
end;
end.
在过去,由于字大小较小,浮点运算缓慢或不存在,我们曾经做过这样的事情:
/* Return approximation of n * PI; n is integer */
#define pi_times(n) (((n) * 22) / 7)
对于不需要太多精度的应用程序(例如视频游戏),这非常快并且足够准确。
评论
355 / 113
圆周率正好是 3![弗林克教授(辛普森一家)]
开玩笑,但这里有一个 C# (.需要 NET-Framework)。
using System;
using System.Text;
class Program {
static void Main(string[] args) {
int Digits = 100;
BigNumber x = new BigNumber(Digits);
BigNumber y = new BigNumber(Digits);
x.ArcTan(16, 5);
y.ArcTan(4, 239);
x.Subtract(y);
string pi = x.ToString();
Console.WriteLine(pi);
}
}
public class BigNumber {
private UInt32[] number;
private int size;
private int maxDigits;
public BigNumber(int maxDigits) {
this.maxDigits = maxDigits;
this.size = (int)Math.Ceiling((float)maxDigits * 0.104) + 2;
number = new UInt32[size];
}
public BigNumber(int maxDigits, UInt32 intPart)
: this(maxDigits) {
number[0] = intPart;
for (int i = 1; i < size; i++) {
number[i] = 0;
}
}
private void VerifySameSize(BigNumber value) {
if (Object.ReferenceEquals(this, value))
throw new Exception("BigNumbers cannot operate on themselves");
if (value.size != this.size)
throw new Exception("BigNumbers must have the same size");
}
public void Add(BigNumber value) {
VerifySameSize(value);
int index = size - 1;
while (index >= 0 && value.number[index] == 0)
index--;
UInt32 carry = 0;
while (index >= 0) {
UInt64 result = (UInt64)number[index] +
value.number[index] + carry;
number[index] = (UInt32)result;
if (result >= 0x100000000U)
carry = 1;
else
carry = 0;
index--;
}
}
public void Subtract(BigNumber value) {
VerifySameSize(value);
int index = size - 1;
while (index >= 0 && value.number[index] == 0)
index--;
UInt32 borrow = 0;
while (index >= 0) {
UInt64 result = 0x100000000U + (UInt64)number[index] -
value.number[index] - borrow;
number[index] = (UInt32)result;
if (result >= 0x100000000U)
borrow = 0;
else
borrow = 1;
index--;
}
}
public void Multiply(UInt32 value) {
int index = size - 1;
while (index >= 0 && number[index] == 0)
index--;
UInt32 carry = 0;
while (index >= 0) {
UInt64 result = (UInt64)number[index] * value + carry;
number[index] = (UInt32)result;
carry = (UInt32)(result >> 32);
index--;
}
}
public void Divide(UInt32 value) {
int index = 0;
while (index < size && number[index] == 0)
index++;
UInt32 carry = 0;
while (index < size) {
UInt64 result = number[index] + ((UInt64)carry << 32);
number[index] = (UInt32)(result / (UInt64)value);
carry = (UInt32)(result % (UInt64)value);
index++;
}
}
public void Assign(BigNumber value) {
VerifySameSize(value);
for (int i = 0; i < size; i++) {
number[i] = value.number[i];
}
}
public override string ToString() {
BigNumber temp = new BigNumber(maxDigits);
temp.Assign(this);
StringBuilder sb = new StringBuilder();
sb.Append(temp.number[0]);
sb.Append(System.Globalization.CultureInfo.CurrentCulture.NumberFormat.CurrencyDecimalSeparator);
int digitCount = 0;
while (digitCount < maxDigits) {
temp.number[0] = 0;
temp.Multiply(100000);
sb.AppendFormat("{0:D5}", temp.number[0]);
digitCount += 5;
}
return sb.ToString();
}
public bool IsZero() {
foreach (UInt32 item in number) {
if (item != 0)
return false;
}
return true;
}
public void ArcTan(UInt32 multiplicand, UInt32 reciprocal) {
BigNumber X = new BigNumber(maxDigits, multiplicand);
X.Divide(reciprocal);
reciprocal *= reciprocal;
this.Assign(X);
BigNumber term = new BigNumber(maxDigits);
UInt32 divisor = 1;
bool subtractTerm = true;
while (true) {
X.Divide(reciprocal);
term.Assign(X);
divisor += 2;
term.Divide(divisor);
if (term.IsZero())
break;
if (subtractTerm)
this.Subtract(term);
else
this.Add(term);
subtractTerm = !subtractTerm;
}
}
}
我没有将 pi 定义为常量,而是总是使用 .acos(-1)
评论
如果您愿意使用近似值,则适用于6位十进制数字,并且具有可用于整数表达式的额外优势。如今,这已经不那么重要了,因为“浮点数学协处理器”不再有任何意义,但它曾经非常重要。355 / 113
为了完整起见,C++ 模板版本,对于优化的构建,它将在编译时计算 PI 的近似值,并将内联到单个值。
#include <iostream>
template<int I>
struct sign
{
enum {value = (I % 2) == 0 ? 1 : -1};
};
template<int I, int J>
struct pi_calc
{
inline static double value ()
{
return (pi_calc<I-1, J>::value () + pi_calc<I-1, J+1>::value ()) / 2.0;
}
};
template<int J>
struct pi_calc<0, J>
{
inline static double value ()
{
return (sign<J>::value * 4.0) / (2.0 * J + 1.0) + pi_calc<0, J-1>::value ();
}
};
template<>
struct pi_calc<0, 0>
{
inline static double value ()
{
return 4.0;
}
};
template<int I>
struct pi
{
inline static double value ()
{
return pi_calc<I, I>::value ();
}
};
int main ()
{
std::cout.precision (12);
const double pi_value = pi<10>::value ();
std::cout << "pi ~ " << pi_value << std::endl;
return 0;
}
请注意,对于 I > 10,优化的构建可能会很慢,对于非优化的运行也是如此。对于 12 次迭代,我相信大约有 80k 次调用 value()(在没有记忆的情况下)。
评论
pi_calc<0, J>
pi_calc<I, J>
如果要计算 π 值的近似值(出于某种原因),则应尝试二进制提取算法。Bellard 对 BBP 的改进给出了 O(N^2) 中的 PI。
如果要获取π值的近似值进行计算,则:
PI = 3.141592654
当然,这只是一个近似值,并不完全准确。它偏离了 0.000000000004102 多一点。(十万亿分之四,约4/10,000,000,000)。
如果你想用π做数学运算,那就给自己买一支铅笔和纸或一个计算机代数包,并使用π的确切值,π。
如果你真的想要一个公式,这个很有趣:
π = -i ln(-1)
评论
带双打:
4.0 * (4.0 * Math.Atan(0.2) - Math.Atan(1.0 / 239.0))
这将精确到小数点后 14 位,足以填充双倍(不准确可能是因为弧切线中的其余小数被截断)。
还有 Seth,它是 3.141592653589793238463,而不是 64。
使用类似 Macin 的公式
176 * arctan (1/57) + 28 * arctan (1/239) - 48 * arctan (1/682) + 96 * arctan(1/12943)
[; \left( 176 \arctan \frac{1}{57} + 28 \arctan \frac{1}{239} - 48 \arctan \frac{1}{682} + 96 \arctan \frac{1}{12943}\right) ;], for you TeX the World people.
在 Scheme 中实现,例如:
(+ (- (+ (* 176 (atan (/ 1 57))) (* 28 (atan (/ 1 239)))) (* 48 (atan (/ 1 682)))) (* 96 (atan (/ 1 12943))))
下面准确地回答了如何以最快的方式做到这一点 - 以最少的计算工作量。即使你不喜欢这个答案,你也不得不承认,这确实是获得PI值的最快方法。
获取 Pi 值的最快方法是:
- 选择您喜欢的编程语言
- 加载其数学库
- 并发现 Pi 已经在那里定义了 -- 可以使用了!
如果您手头没有数学库..
第二快的方法(更通用的解决方案)是:
在互联网上查找 Pi,例如这里:
http://www.eveandersson.com/pi/digits/1000000(100 万位 .. 你的浮点精度是多少?
或在这里:
http://3.141592653589793238462643383279502884197169399375105820974944592.com/
或在这里:
http://en.wikipedia.org/wiki/Pi
找到您想要使用的任何精度算术所需的数字非常快,并且通过定义一个常量,您可以确保不会浪费宝贵的 CPU 时间。
这不仅是一个部分幽默的答案,而且在现实中,如果有人愿意继续计算 Pi 在实际应用程序中的价值......这将是对 CPU 时间的极大浪费,不是吗?至少我没有看到尝试重新计算它的真正应用程序。
还要考虑到 NASA 仅使用 Pi 的 15 位数字来计算星际旅行:
- TL;DR:https://twitter.com/Rainmaker1973/status/1463477499434835968
- JPL 解释:https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/
评论
从圆面积计算π:-)
<input id="range" type="range" min="10" max="960" value="10" step="50" oninput="calcPi()">
<br>
<div id="cont"></div>
<script>
function generateCircle(width) {
var c = width/2;
var delta = 1.0;
var str = "";
var xCount = 0;
for (var x=0; x <= width; x++) {
for (var y = 0; y <= width; y++) {
var d = Math.sqrt((x-c)*(x-c) + (y-c)*(y-c));
if (d > (width-1)/2) {
str += '.';
}
else {
xCount++;
str += 'o';
}
str += " "
}
str += "\n";
}
var pi = (xCount * 4) / (width * width);
return [str, pi];
}
function calcPi() {
var e = document.getElementById("cont");
var width = document.getElementById("range").value;
e.innerHTML = "<h4>Generating circle...</h4>";
setTimeout(function() {
var circ = generateCircle(width);
e.innerHTML = "<pre>" + "π = " + circ[1].toFixed(2) + "\n" + circ[0] +"</pre>";
}, 200);
}
calcPi();
</script>
如果您不介意执行平方根和几个逆运算,Chudnovsky 算法非常快。它在短短 2 次迭代中收敛到双精度。
/*
Chudnovsky algorithm for computing PI
*/
#include <iostream>
#include <cmath>
using namespace std;
double calc_PI(int K=2) {
static const int A = 545140134;
static const int B = 13591409;
static const int D = 640320;
const double ID3 = 1./ (double(D)*double(D)*double(D));
double sum = 0.;
double b = sqrt(ID3);
long long int p = 1;
long long int a = B;
sum += double(p) * double(a)* b;
// 2 iterations enough for double convergence
for (int k=1; k<K; ++k) {
// A*k + B
a += A;
// update denominator
b *= ID3;
// p = (-1)^k 6k! / 3k! k!^3
p *= (6*k)*(6*k-1)*(6*k-2)*(6*k-3)*(6*k-4)*(6*k-5);
p /= (3*k)*(3*k-1)*(3*k-2) * k*k*k;
p = -p;
sum += double(p) * double(a)* b;
}
return 1./(12*sum);
}
int main() {
cout.precision(16);
cout.setf(ios::fixed);
for (int k=1; k<=5; ++k) cout << "k = " << k << " PI = " << calc_PI(k) << endl;
return 0;
}
结果:
k = 1 PI = 3.1415926535897341
k = 2 PI = 3.1415926535897931
k = 3 PI = 3.1415926535897931
k = 4 PI = 3.1415926535897931
k = 5 PI = 3.1415926535897931
基本上是回形针优化器的 C 版本的答案,而且更加简化:
#include <stdio.h>
#include <math.h>
double calc_PI(int K) {
static const int A = 545140134;
static const int B = 13591409;
static const int D = 640320;
const double ID3 = 1.0 / ((double) D * (double) D * (double) D);
double sum = 0.0;
double b = sqrt(ID3);
long long int p = 1;
long long int a = B;
sum += (double) p * (double) a * b;
for (int k = 1; k < K; ++k) {
a += A;
b *= ID3;
p *= (6 * k) * (6 * k - 1) * (6 * k - 2) * (6 * k - 3) * (6 * k - 4) * (6 * k - 5);
p /= (3 * k) * (3 * k - 1) * (3 * k - 2) * k * k * k;
p = -p;
sum += (double) p * (double) a * b;
}
return 1.0 / (12 * sum);
}
int main() {
for (int k = 1; k <= 5; ++k) {
printf("k = %i, PI = %.16f\n", k, calc_PI(k));
}
}
但为了进一步简化,这个算法采用了 Chudnovsky 的公式,如果你不真正理解代码,我可以完全简化它。
摘要:我们将得到一个从 1 到 5 的数字,并将其添加到我们将用于获取 PI 的函数中。然后给你 3 个数字:545140134 (A)、13591409 (B)、640320 (D)。然后我们将使用 D 作为自身乘以 3 倍到另一个 (ID3)。然后我们将 ID3 的平方根放入另一个 (b) 并分配 2 个数字:1 (p),B (a) 的值。请注意,C 不区分大小写。然后,通过将 p、a 和 b 的值相乘来创建一个(总和),这些值都在 s 中。然后一个循环,直到为函数给出的数字将开始并将 A 的值与 a 相加,b 的值乘以 ID3,p 的值将乘以我希望你能理解的多个值,并且也被多个值除以。总和将再次乘以 p、a 和 b,循环将重复,直到循环数的值大于或等于 5。稍后,总和乘以 12 并由函数返回,得到 PI 的结果。double
double
double
double
double
好吧,那很长,但我想你会明白的......
我认为圆周率的值是圆的周长和半径之间的比率。
它可以通过常规的数学计算简单地实现
比 GMPY2 和 MPmath 内置更快:45 分钟内达到 10 亿:
我尝试了几种方法;Manchin、AGM 和 Chudnovsky Bros. Chudnovsky 与 Binary Split 是最快的: 我的github :
https://github.com/Overboard-code/Pi-Pourri
我的二进制拆分 Chudnovsky 的速度大约是内置 gmpy2.const_pi() 的两倍。MPmath.mp.pi() 花了 50 分钟才能获得 10 亿,所以它几乎和 Chudnovsky 一样快。
我也非常感谢性能提示。我不确定我的代码是否完美。它是 100% 准确的(所有公式都同意 1 亿),但也许可以更快?
我尝试将 gmpy2.const_pi() 增加到 1 亿位,在同一台机器上花了 300 秒,而 Chudnovsky 需要 150 秒。pi.txt 和 pi2.txt 是相同的。
我在不到一个小时的时间内在我的旧 i7 16GB 笔记本电脑上达到了 10 亿位数字。
以下是我尝试过的 12 种方法中最快的一种:
class PiChudnovsky:
"""Version of Chudnovsky Bros using Binary Splitting
So far this is the winner for fastest time to a million digits on my older intel i7
"""
A = mpz(13591409)
B = mpz(545140134)
C = mpz(640320)
D = mpz(426880)
E = mpz(10005)
C3_24 = pow(C, mpz(3)) // mpz(24)
#DIGITS_PER_TERM = math.log(53360 ** 3) / math.log(10) #=> 14.181647462725476
DIGITS_PER_TERM = 14.181647462725476
MMILL = mpz(1000000)
def __init__(self,ndigits):
""" Initialization
:param int ndigits: digits of PI computation
"""
self.ndigits = ndigits
self.n = mpz(self.ndigits // self.DIGITS_PER_TERM + 1)
self.prec = mpz((self.ndigits + 1) * LOG2_10)
self.one_sq = pow(mpz(10),mpz(2 * ndigits))
self.sqrt_c = isqrt(self.E * self.one_sq)
self.iters = mpz(0)
self.start_time = 0
def compute(self):
""" Computation """
try:
self.start_time = time.time()
logging.debug("Starting {} formula to {:,} decimal places"
.format(name,ndigits) )
__, q, t = self.__bs(mpz(0), self.n) # p is just for recursion
pi = (q * self.D * self.sqrt_c) // t
logging.debug('{} calulation Done! {:,} iterations and {:.2f} seconds.'
.format( name, int(self.iters),time.time() - self.start_time))
get_context().precision= int((self.ndigits+10) * LOG2_10)
pi_s = pi.digits() # digits() gmpy2 creates a string
pi_o = pi_s[:1] + "." + pi_s[1:]
return pi_o,int(self.iters),time.time() - self.start_time
except Exception as e:
print (e.message, e.args)
raise
def __bs(self, a, b):
""" PQT computation by BSA(= Binary Splitting Algorithm)
:param int a: positive integer
:param int b: positive integer
:return list [int p_ab, int q_ab, int t_ab]
"""
try:
self.iters += mpz(1)
if self.iters % self.MMILL == mpz(0):
logging.debug('Chudnovsky ... {:,} iterations and {:.2f} seconds.'
.format( int(self.iters),time.time() - self.start_time))
if a + mpz(1) == b:
if a == mpz(0):
p_ab = q_ab = mpz(1)
else:
p_ab = mpz((mpz(6) * a - mpz(5)) * (mpz(2) * a - mpz(1)) * (mpz(6) * a - mpz(1)))
q_ab = pow(a,mpz(3)) * self.C3_24
t_ab = p_ab * (self.A + self.B * a)
if a & 1:
t_ab *= mpz(-1)
else:
m = (a + b) // mpz(2)
p_am, q_am, t_am = self.__bs(a, m)
p_mb, q_mb, t_mb = self.__bs(m, b)
p_ab = p_am * p_mb
q_ab = q_am * q_mb
t_ab = q_mb * t_am + p_am * t_mb
return [p_ab, q_ab, t_ab]
except Exception as e:
print (e.message, e.args)
raise
以下是 1,000,000,000 位不到 45 分钟的输出:
python pi-pourri.py -v -d 1,000,000,000 -a 10
[INFO] 2022-10-03 09:22:51,860 <module>: MainProcess Computing π to 1,000,000,000 digits.
[DEBUG] 2022-10-03 09:25:00,543 compute: MainProcess Starting Chudnovsky brothers 1988
π = (Q(0, N) / 12T(0, N) + 12AQ(0, N))**(C**(3/2))
formula to 1,000,000,000 decimal places
[DEBUG] 2022-10-03 09:25:04,995 __bs: MainProcess Chudnovsky ... 1,000,000 iterations and 4.45 seconds.
[DEBUG] 2022-10-03 09:25:10,836 __bs: MainProcess Chudnovsky ... 2,000,000 iterations and 10.29 seconds.
[DEBUG] 2022-10-03 09:25:18,227 __bs: MainProcess Chudnovsky ... 3,000,000 iterations and 17.68 seconds.
[DEBUG] 2022-10-03 09:25:24,512 __bs: MainProcess Chudnovsky ... 4,000,000 iterations and 23.97 seconds.
[DEBUG] 2022-10-03 09:25:35,670 __bs: MainProcess Chudnovsky ... 5,000,000 iterations and 35.13 seconds.
[DEBUG] 2022-10-03 09:25:41,376 __bs: MainProcess Chudnovsky ... 6,000,000 iterations and 40.83 seconds.
[DEBUG] 2022-10-03 09:25:49,238 __bs: MainProcess Chudnovsky ... 7,000,000 iterations and 48.69 seconds.
[DEBUG] 2022-10-03 09:25:55,646 __bs: MainProcess Chudnovsky ... 8,000,000 iterations and 55.10 seconds.
[DEBUG] 2022-10-03 09:26:15,043 __bs: MainProcess Chudnovsky ... 9,000,000 iterations and 74.50 seconds.
[DEBUG] 2022-10-03 09:26:21,437 __bs: MainProcess Chudnovsky ... 10,000,000 iterations and 80.89 seconds.
[DEBUG] 2022-10-03 09:26:26,587 __bs: MainProcess Chudnovsky ... 11,000,000 iterations and 86.04 seconds.
[DEBUG] 2022-10-03 09:26:34,777 __bs: MainProcess Chudnovsky ... 12,000,000 iterations and 94.23 seconds.
[DEBUG] 2022-10-03 09:26:41,231 __bs: MainProcess Chudnovsky ... 13,000,000 iterations and 100.69 seconds.
[DEBUG] 2022-10-03 09:26:52,972 __bs: MainProcess Chudnovsky ... 14,000,000 iterations and 112.43 seconds.
[DEBUG] 2022-10-03 09:26:59,517 __bs: MainProcess Chudnovsky ... 15,000,000 iterations and 118.97 seconds.
[DEBUG] 2022-10-03 09:27:07,932 __bs: MainProcess Chudnovsky ... 16,000,000 iterations and 127.39 seconds.
[DEBUG] 2022-10-03 09:27:14,036 __bs: MainProcess Chudnovsky ... 17,000,000 iterations and 133.49 seconds.
[DEBUG] 2022-10-03 09:27:51,629 __bs: MainProcess Chudnovsky ... 18,000,000 iterations and 171.09 seconds.
[DEBUG] 2022-10-03 09:27:58,176 __bs: MainProcess Chudnovsky ... 19,000,000 iterations and 177.63 seconds.
[DEBUG] 2022-10-03 09:28:06,704 __bs: MainProcess Chudnovsky ... 20,000,000 iterations and 186.16 seconds.
[DEBUG] 2022-10-03 09:28:13,376 __bs: MainProcess Chudnovsky ... 21,000,000 iterations and 192.83 seconds.
[DEBUG] 2022-10-03 09:28:18,737 __bs: MainProcess Chudnovsky ... 22,000,000 iterations and 198.19 seconds.
[DEBUG] 2022-10-03 09:28:31,095 __bs: MainProcess Chudnovsky ... 23,000,000 iterations and 210.55 seconds.
[DEBUG] 2022-10-03 09:28:37,789 __bs: MainProcess Chudnovsky ... 24,000,000 iterations and 217.25 seconds.
[DEBUG] 2022-10-03 09:28:46,171 __bs: MainProcess Chudnovsky ... 25,000,000 iterations and 225.63 seconds.
[DEBUG] 2022-10-03 09:28:52,933 __bs: MainProcess Chudnovsky ... 26,000,000 iterations and 232.39 seconds.
[DEBUG] 2022-10-03 09:29:13,524 __bs: MainProcess Chudnovsky ... 27,000,000 iterations and 252.98 seconds.
[DEBUG] 2022-10-03 09:29:19,676 __bs: MainProcess Chudnovsky ... 28,000,000 iterations and 259.13 seconds.
[DEBUG] 2022-10-03 09:29:28,196 __bs: MainProcess Chudnovsky ... 29,000,000 iterations and 267.65 seconds.
[DEBUG] 2022-10-03 09:29:34,720 __bs: MainProcess Chudnovsky ... 30,000,000 iterations and 274.18 seconds.
[DEBUG] 2022-10-03 09:29:47,075 __bs: MainProcess Chudnovsky ... 31,000,000 iterations and 286.53 seconds.
[DEBUG] 2022-10-03 09:29:53,746 __bs: MainProcess Chudnovsky ... 32,000,000 iterations and 293.20 seconds.
[DEBUG] 2022-10-03 09:29:59,099 __bs: MainProcess Chudnovsky ... 33,000,000 iterations and 298.56 seconds.
[DEBUG] 2022-10-03 09:30:07,511 __bs: MainProcess Chudnovsky ... 34,000,000 iterations and 306.97 seconds.
[DEBUG] 2022-10-03 09:30:14,279 __bs: MainProcess Chudnovsky ... 35,000,000 iterations and 313.74 seconds.
[DEBUG] 2022-10-03 09:31:31,710 __bs: MainProcess Chudnovsky ... 36,000,000 iterations and 391.17 seconds.
[DEBUG] 2022-10-03 09:31:38,454 __bs: MainProcess Chudnovsky ... 37,000,000 iterations and 397.91 seconds.
[DEBUG] 2022-10-03 09:31:46,437 __bs: MainProcess Chudnovsky ... 38,000,000 iterations and 405.89 seconds.
[DEBUG] 2022-10-03 09:31:53,285 __bs: MainProcess Chudnovsky ... 39,000,000 iterations and 412.74 seconds.
[DEBUG] 2022-10-03 09:32:05,602 __bs: MainProcess Chudnovsky ... 40,000,000 iterations and 425.06 seconds.
[DEBUG] 2022-10-03 09:32:12,220 __bs: MainProcess Chudnovsky ... 41,000,000 iterations and 431.68 seconds.
[DEBUG] 2022-10-03 09:32:20,708 __bs: MainProcess Chudnovsky ... 42,000,000 iterations and 440.17 seconds.
[DEBUG] 2022-10-03 09:32:27,552 __bs: MainProcess Chudnovsky ... 43,000,000 iterations and 447.01 seconds.
[DEBUG] 2022-10-03 09:32:32,986 __bs: MainProcess Chudnovsky ... 44,000,000 iterations and 452.44 seconds.
[DEBUG] 2022-10-03 09:32:53,904 __bs: MainProcess Chudnovsky ... 45,000,000 iterations and 473.36 seconds.
[DEBUG] 2022-10-03 09:33:00,832 __bs: MainProcess Chudnovsky ... 46,000,000 iterations and 480.29 seconds.
[DEBUG] 2022-10-03 09:33:09,198 __bs: MainProcess Chudnovsky ... 47,000,000 iterations and 488.66 seconds.
[DEBUG] 2022-10-03 09:33:16,000 __bs: MainProcess Chudnovsky ... 48,000,000 iterations and 495.46 seconds.
[DEBUG] 2022-10-03 09:33:27,921 __bs: MainProcess Chudnovsky ... 49,000,000 iterations and 507.38 seconds.
[DEBUG] 2022-10-03 09:33:34,778 __bs: MainProcess Chudnovsky ... 50,000,000 iterations and 514.24 seconds.
[DEBUG] 2022-10-03 09:33:43,298 __bs: MainProcess Chudnovsky ... 51,000,000 iterations and 522.76 seconds.
[DEBUG] 2022-10-03 09:33:49,959 __bs: MainProcess Chudnovsky ... 52,000,000 iterations and 529.42 seconds.
[DEBUG] 2022-10-03 09:34:29,294 __bs: MainProcess Chudnovsky ... 53,000,000 iterations and 568.75 seconds.
[DEBUG] 2022-10-03 09:34:36,176 __bs: MainProcess Chudnovsky ... 54,000,000 iterations and 575.63 seconds.
[DEBUG] 2022-10-03 09:34:41,576 __bs: MainProcess Chudnovsky ... 55,000,000 iterations and 581.03 seconds.
[DEBUG] 2022-10-03 09:34:50,161 __bs: MainProcess Chudnovsky ... 56,000,000 iterations and 589.62 seconds.
[DEBUG] 2022-10-03 09:34:56,811 __bs: MainProcess Chudnovsky ... 57,000,000 iterations and 596.27 seconds.
[DEBUG] 2022-10-03 09:35:09,382 __bs: MainProcess Chudnovsky ... 58,000,000 iterations and 608.84 seconds.
[DEBUG] 2022-10-03 09:35:16,206 __bs: MainProcess Chudnovsky ... 59,000,000 iterations and 615.66 seconds.
[DEBUG] 2022-10-03 09:35:24,295 __bs: MainProcess Chudnovsky ... 60,000,000 iterations and 623.75 seconds.
[DEBUG] 2022-10-03 09:35:31,095 __bs: MainProcess Chudnovsky ... 61,000,000 iterations and 630.55 seconds.
[DEBUG] 2022-10-03 09:35:52,139 __bs: MainProcess Chudnovsky ... 62,000,000 iterations and 651.60 seconds.
[DEBUG] 2022-10-03 09:35:58,781 __bs: MainProcess Chudnovsky ... 63,000,000 iterations and 658.24 seconds.
[DEBUG] 2022-10-03 09:36:07,399 __bs: MainProcess Chudnovsky ... 64,000,000 iterations and 666.86 seconds.
[DEBUG] 2022-10-03 09:36:12,847 __bs: MainProcess Chudnovsky ... 65,000,000 iterations and 672.30 seconds.
[DEBUG] 2022-10-03 09:36:19,763 __bs: MainProcess Chudnovsky ... 66,000,000 iterations and 679.22 seconds.
[DEBUG] 2022-10-03 09:36:32,351 __bs: MainProcess Chudnovsky ... 67,000,000 iterations and 691.81 seconds.
[DEBUG] 2022-10-03 09:36:39,078 __bs: MainProcess Chudnovsky ... 68,000,000 iterations and 698.53 seconds.
[DEBUG] 2022-10-03 09:36:47,830 __bs: MainProcess Chudnovsky ... 69,000,000 iterations and 707.29 seconds.
[DEBUG] 2022-10-03 09:36:54,701 __bs: MainProcess Chudnovsky ... 70,000,000 iterations and 714.16 seconds.
[DEBUG] 2022-10-03 09:39:39,357 __bs: MainProcess Chudnovsky ... 71,000,000 iterations and 878.81 seconds.
[DEBUG] 2022-10-03 09:39:46,199 __bs: MainProcess Chudnovsky ... 72,000,000 iterations and 885.66 seconds.
[DEBUG] 2022-10-03 09:39:54,956 __bs: MainProcess Chudnovsky ... 73,000,000 iterations and 894.41 seconds.
[DEBUG] 2022-10-03 09:40:01,639 __bs: MainProcess Chudnovsky ... 74,000,000 iterations and 901.10 seconds.
[DEBUG] 2022-10-03 09:40:14,219 __bs: MainProcess Chudnovsky ... 75,000,000 iterations and 913.68 seconds.
[DEBUG] 2022-10-03 09:40:19,680 __bs: MainProcess Chudnovsky ... 76,000,000 iterations and 919.14 seconds.
[DEBUG] 2022-10-03 09:40:26,625 __bs: MainProcess Chudnovsky ... 77,000,000 iterations and 926.08 seconds.
[DEBUG] 2022-10-03 09:40:35,212 __bs: MainProcess Chudnovsky ... 78,000,000 iterations and 934.67 seconds.
[DEBUG] 2022-10-03 09:40:41,914 __bs: MainProcess Chudnovsky ... 79,000,000 iterations and 941.37 seconds.
[DEBUG] 2022-10-03 09:41:03,218 __bs: MainProcess Chudnovsky ... 80,000,000 iterations and 962.68 seconds.
[DEBUG] 2022-10-03 09:41:10,213 __bs: MainProcess Chudnovsky ... 81,000,000 iterations and 969.67 seconds.
[DEBUG] 2022-10-03 09:41:18,344 __bs: MainProcess Chudnovsky ... 82,000,000 iterations and 977.80 seconds.
[DEBUG] 2022-10-03 09:41:25,261 __bs: MainProcess Chudnovsky ... 83,000,000 iterations and 984.72 seconds.
[DEBUG] 2022-10-03 09:41:37,663 __bs: MainProcess Chudnovsky ... 84,000,000 iterations and 997.12 seconds.
[DEBUG] 2022-10-03 09:41:44,680 __bs: MainProcess Chudnovsky ... 85,000,000 iterations and 1004.14 seconds.
[DEBUG] 2022-10-03 09:41:53,411 __bs: MainProcess Chudnovsky ... 86,000,000 iterations and 1012.87 seconds.
[DEBUG] 2022-10-03 09:41:58,926 __bs: MainProcess Chudnovsky ... 87,000,000 iterations and 1018.38 seconds.
[DEBUG] 2022-10-03 09:42:05,858 __bs: MainProcess Chudnovsky ... 88,000,000 iterations and 1025.32 seconds.
[DEBUG] 2022-10-03 09:42:46,163 __bs: MainProcess Chudnovsky ... 89,000,000 iterations and 1065.62 seconds.
[DEBUG] 2022-10-03 09:42:53,054 __bs: MainProcess Chudnovsky ... 90,000,000 iterations and 1072.51 seconds.
[DEBUG] 2022-10-03 09:43:02,030 __bs: MainProcess Chudnovsky ... 91,000,000 iterations and 1081.49 seconds.
[DEBUG] 2022-10-03 09:43:09,192 __bs: MainProcess Chudnovsky ... 92,000,000 iterations and 1088.65 seconds.
[DEBUG] 2022-10-03 09:43:21,533 __bs: MainProcess Chudnovsky ... 93,000,000 iterations and 1100.99 seconds.
[DEBUG] 2022-10-03 09:43:28,643 __bs: MainProcess Chudnovsky ... 94,000,000 iterations and 1108.10 seconds.
[DEBUG] 2022-10-03 09:43:37,372 __bs: MainProcess Chudnovsky ... 95,000,000 iterations and 1116.83 seconds.
[DEBUG] 2022-10-03 09:43:44,558 __bs: MainProcess Chudnovsky ... 96,000,000 iterations and 1124.02 seconds.
[DEBUG] 2022-10-03 09:44:06,555 __bs: MainProcess Chudnovsky ... 97,000,000 iterations and 1146.01 seconds.
[DEBUG] 2022-10-03 09:44:12,220 __bs: MainProcess Chudnovsky ... 98,000,000 iterations and 1151.68 seconds.
[DEBUG] 2022-10-03 09:44:19,278 __bs: MainProcess Chudnovsky ... 99,000,000 iterations and 1158.74 seconds.
[DEBUG] 2022-10-03 09:44:28,323 __bs: MainProcess Chudnovsky ... 100,000,000 iterations and 1167.78 seconds.
[DEBUG] 2022-10-03 09:44:35,211 __bs: MainProcess Chudnovsky ... 101,000,000 iterations and 1174.67 seconds.
[DEBUG] 2022-10-03 09:44:48,331 __bs: MainProcess Chudnovsky ... 102,000,000 iterations and 1187.79 seconds.
[DEBUG] 2022-10-03 09:44:54,835 __bs: MainProcess Chudnovsky ... 103,000,000 iterations and 1194.29 seconds.
[DEBUG] 2022-10-03 09:45:03,869 __bs: MainProcess Chudnovsky ... 104,000,000 iterations and 1203.33 seconds.
[DEBUG] 2022-10-03 09:45:10,967 __bs: MainProcess Chudnovsky ... 105,000,000 iterations and 1210.42 seconds.
[DEBUG] 2022-10-03 09:46:32,760 __bs: MainProcess Chudnovsky ... 106,000,000 iterations and 1292.22 seconds.
[DEBUG] 2022-10-03 09:46:39,872 __bs: MainProcess Chudnovsky ... 107,000,000 iterations and 1299.33 seconds.
[DEBUG] 2022-10-03 09:46:48,948 __bs: MainProcess Chudnovsky ... 108,000,000 iterations and 1308.41 seconds.
[DEBUG] 2022-10-03 09:46:54,611 __bs: MainProcess Chudnovsky ... 109,000,000 iterations and 1314.07 seconds.
[DEBUG] 2022-10-03 09:47:01,727 __bs: MainProcess Chudnovsky ... 110,000,000 iterations and 1321.18 seconds.
[DEBUG] 2022-10-03 09:47:14,525 __bs: MainProcess Chudnovsky ... 111,000,000 iterations and 1333.98 seconds.
[DEBUG] 2022-10-03 09:47:21,682 __bs: MainProcess Chudnovsky ... 112,000,000 iterations and 1341.14 seconds.
[DEBUG] 2022-10-03 09:47:30,610 __bs: MainProcess Chudnovsky ... 113,000,000 iterations and 1350.07 seconds.
[DEBUG] 2022-10-03 09:47:37,176 __bs: MainProcess Chudnovsky ... 114,000,000 iterations and 1356.63 seconds.
[DEBUG] 2022-10-03 09:47:59,642 __bs: MainProcess Chudnovsky ... 115,000,000 iterations and 1379.10 seconds.
[DEBUG] 2022-10-03 09:48:06,702 __bs: MainProcess Chudnovsky ... 116,000,000 iterations and 1386.16 seconds.
[DEBUG] 2022-10-03 09:48:15,483 __bs: MainProcess Chudnovsky ... 117,000,000 iterations and 1394.94 seconds.
[DEBUG] 2022-10-03 09:48:22,537 __bs: MainProcess Chudnovsky ... 118,000,000 iterations and 1401.99 seconds.
[DEBUG] 2022-10-03 09:48:35,714 __bs: MainProcess Chudnovsky ... 119,000,000 iterations and 1415.17 seconds.
[DEBUG] 2022-10-03 09:48:41,321 __bs: MainProcess Chudnovsky ... 120,000,000 iterations and 1420.78 seconds.
[DEBUG] 2022-10-03 09:48:48,408 __bs: MainProcess Chudnovsky ... 121,000,000 iterations and 1427.87 seconds.
[DEBUG] 2022-10-03 09:48:57,138 __bs: MainProcess Chudnovsky ... 122,000,000 iterations and 1436.60 seconds.
[DEBUG] 2022-10-03 09:49:04,328 __bs: MainProcess Chudnovsky ... 123,000,000 iterations and 1443.79 seconds.
[DEBUG] 2022-10-03 09:49:46,274 __bs: MainProcess Chudnovsky ... 124,000,000 iterations and 1485.73 seconds.
[DEBUG] 2022-10-03 09:49:52,833 __bs: MainProcess Chudnovsky ... 125,000,000 iterations and 1492.29 seconds.
[DEBUG] 2022-10-03 09:50:01,786 __bs: MainProcess Chudnovsky ... 126,000,000 iterations and 1501.24 seconds.
[DEBUG] 2022-10-03 09:50:08,975 __bs: MainProcess Chudnovsky ... 127,000,000 iterations and 1508.43 seconds.
[DEBUG] 2022-10-03 09:50:21,850 __bs: MainProcess Chudnovsky ... 128,000,000 iterations and 1521.31 seconds.
[DEBUG] 2022-10-03 09:50:28,962 __bs: MainProcess Chudnovsky ... 129,000,000 iterations and 1528.42 seconds.
[DEBUG] 2022-10-03 09:50:34,594 __bs: MainProcess Chudnovsky ... 130,000,000 iterations and 1534.05 seconds.
[DEBUG] 2022-10-03 09:50:43,647 __bs: MainProcess Chudnovsky ... 131,000,000 iterations and 1543.10 seconds.
[DEBUG] 2022-10-03 09:50:50,724 __bs: MainProcess Chudnovsky ... 132,000,000 iterations and 1550.18 seconds.
[DEBUG] 2022-10-03 09:51:12,742 __bs: MainProcess Chudnovsky ... 133,000,000 iterations and 1572.20 seconds.
[DEBUG] 2022-10-03 09:51:19,799 __bs: MainProcess Chudnovsky ... 134,000,000 iterations and 1579.26 seconds.
[DEBUG] 2022-10-03 09:51:28,824 __bs: MainProcess Chudnovsky ... 135,000,000 iterations and 1588.28 seconds.
[DEBUG] 2022-10-03 09:51:35,324 __bs: MainProcess Chudnovsky ... 136,000,000 iterations and 1594.78 seconds.
[DEBUG] 2022-10-03 09:51:48,419 __bs: MainProcess Chudnovsky ... 137,000,000 iterations and 1607.88 seconds.
[DEBUG] 2022-10-03 09:51:55,634 __bs: MainProcess Chudnovsky ... 138,000,000 iterations and 1615.09 seconds.
[DEBUG] 2022-10-03 09:52:04,435 __bs: MainProcess Chudnovsky ... 139,000,000 iterations and 1623.89 seconds.
[DEBUG] 2022-10-03 09:52:11,583 __bs: MainProcess Chudnovsky ... 140,000,000 iterations and 1631.04 seconds.
[DEBUG] 2022-10-03 09:52:17,222 __bs: MainProcess Chudnovsky ... 141,000,000 iterations and 1636.68 seconds.
[DEBUG] 2022-10-03 10:02:43,939 compute: MainProcess Chudnovsky brothers 1988
π = (Q(0, N) / 12T(0, N) + 12AQ(0, N))**(C**(3/2))
calulation Done! 141,027,339 iterations and 2263.39 seconds.
[INFO] 2022-10-03 10:09:07,119 <module>: MainProcess Last 5 digits of π were 45519 as expected at offset 999,999,995
[INFO] 2022-10-03 10:09:07,119 <module>: MainProcess Calculated π to 1,000,000,000 digits using a formula of:
10 Chudnovsky brothers 1988
π = (Q(0, N) / 12T(0, N) + 12AQ(0, N))**(C**(3/2))
[INFO] 2022-10-03 10:09:07,120 <module>: MainProcess Calculation took 141,027,339 iterations and 0:44:06.398345.
math_pi.pi(b = 1000000) 更快到一百万。快了大约 40 倍。但它不能达到十亿。100万是最多的数字。
GMPY 内置的 GMPY 如下所示:
python pi-pourri.py -v -d 1,000,000,000 -a 11
[INFO] 2022-10-03 14:33:34,729 <module>: MainProcess Computing π to 1,000,000,000 digits.
[DEBUG] 2022-10-03 14:33:34,729 compute: MainProcess Starting const_pi() function from the gmpy2 library formula to 1,000,000,000 decimal places
[DEBUG] 2022-10-03 15:46:46,575 compute: MainProcess const_pi() function from the gmpy2 library calulation Done! 1 iterations and 4391.85 seconds.
[INFO] 2022-10-03 15:46:46,575 <module>: MainProcess Last 5 digits of π were 45519 as expected at offset 999,999,995
[INFO] 2022-10-03 15:46:46,575 <module>: MainProcess Calculated π to 1,000,000,000 digits using a formula of:
11 const_pi() function from the gmpy2 library
[INFO] 2022-10-03 15:46:46,575 <module>: MainProcess Calculation took 1 iterations and 1:13:11.845652.
MPmath Builtin 几乎同样快。慢约 12%(6 分钟):
python pi-pourri.py -v -a 12 -d 1,000,000,000
[INFO] 2022-10-04 09:10:37,085 <module>: MainProcess Computing π to 1,000,000,000 digits.
[DEBUG] 2022-10-04 09:10:37,085 compute: MainProcess Starting mp.pi() function from the mpmath library formula to 1,000,000,000 decimal places
[DEBUG] 2022-10-04 10:01:25,321 compute: MainProcess mp.pi() function from the mpmath library calulation Done! 1 iterations and 3048.22 seconds.
[INFO] 2022-10-04 10:01:25,338 <module>: MainProcess Last 5 digits of π were 45519 as expected at offset 999,999,995
[INFO] 2022-10-04 10:01:25,340 <module>: MainProcess Calculated π to 1,000,000,000 digits using a formula of:
12 mp.pi() function from the mpmath library
[INFO] 2022-10-04 10:01:25,343 <module>: MainProcess Calculation took 1 iterations and 0:50:48.250337.
上一个:创建色轮的函数 [已关闭]
下一个:如何在 2D 中计算三乘积
评论
M_PI
atan2(0, -1)