提问人:Bill2462 提问时间:4/1/2021 最后编辑:Lutz LehmannBill2462 更新时间:4/5/2021 访问量:1512
速度 verlet 算法 - n 体问题的能量增加
Velocity verlet algorithm - energy increasing for n-body problem
问:
问题
我实现了速度 verlet 算法来计算 2 个物体在引力作用下相互作用的轨迹(仅限牛顿引力)。轨道较小的物体具有非常小的质量,位于轨道中心的物体具有较大的质量。
从理论上讲,Velocity Verlet 不应该改变系统的总能量(它会振荡,但随着时间的推移,平均值将保持接近初始能量)。
然而,在实践中,我观察到能量随着时间的推移而增加。
结果
以下是说明该问题的一些结果。 所有仿真均以时间步长dt=0.001进行。 轨道飞行体的质量为1000,宇宙的引力常数设置为G=1.0
在所有情况下,较小的物体初始位置是{0,0,1},它的初始速度是{0,32,0}。 较大物体的初始速度为{0,0,0}。
病例 1(小体重 = 0.00001)
以下是较小物体的轨迹:
这是超过 100k 步的能量。
正如我们所看到的,能量变化不大。小的变化可能是由于计算不准确造成的。
病例 1(小体重 = 0.001)
这是轨道物体的轨迹:
这是总能量:
正如我们现在所看到的,系统正在获得能量。
病例 3(小体重 = 1)
这是轨道物体的轨迹:
这是总能量:
现在我们正在获得很多能量。
法典
以下是执行所有计算的源代码:
高级积分器代码:
void Universe::simulation_step()
{
for(std::size_t i=0; i<get_size(); i++)
{
// Verlet step 1: Compute v(t + dt/2) = v(t) + 0.5*dt*a(t)
const Vector3D<Real> vel_half_step = {
velocity(i, 0) + static_cast<Real>(0.5)*sim_config.timestep*acceleration(i, 0),
velocity(i, 1) + static_cast<Real>(0.5)*sim_config.timestep*acceleration(i, 1),
velocity(i, 2) + static_cast<Real>(0.5)*sim_config.timestep*acceleration(i, 2)
};
// Verlet step 2: Compute x(t + dt) = x(t) + v(t + dt/2)*dt
position(i, 0) += vel_half_step.x*sim_config.timestep;
position(i, 1) += vel_half_step.y*sim_config.timestep;
position(i, 2) += vel_half_step.z*sim_config.timestep;
// Verlet step 3: update forces and update acceleration.
const Vector3D<Real> forces = compute_net_grawitational_force(i);
acceleration(i, 0) = forces.x/mass(i);
acceleration(i, 1) = forces.y/mass(i);
acceleration(i, 2) = forces.z/mass(i);
// Verlet step 4: update velocity to the full timestep.
velocity(i, 0) = vel_half_step.x + static_cast<Real>(0.5)*sim_config.timestep*acceleration(i, 0);
velocity(i, 1) = vel_half_step.y + static_cast<Real>(0.5)*sim_config.timestep*acceleration(i, 1);
velocity(i, 2) = vel_half_step.z + static_cast<Real>(0.5)*sim_config.timestep*acceleration(i, 2);
}
sim_time += sim_config.timestep;
}
以下是计算作用在身体上的净重力的代码:
Vector3D<Real> Universe::compute_net_grawitational_force(std::size_t i)
{
Vector3D<Real> accumulated_force = {0,0,0};
const Vector3D<Real> r2 = {
position(i, 0),
position(i, 1),
position(i, 2)
};
const Real m1 = mass(i);
for(std::size_t k=0; k<get_size(); k++)
{
if(k == i)
continue;
const Vector3D<Real> distace_vec = {
r2.x - position(k, 0),
r2.y - position(k, 1),
r2.z - position(k, 2),
};
const Real distance = distace_vec.norm2();
// Compute term that will be multipled by distance vector.
const Real a = (-1*sim_config.G*m1*mass(k))/
(distance*distance*distance);
// Compute and add new force acting on the body.
accumulated_force.x += distace_vec.x*a;
accumulated_force.y += distace_vec.y*a;
accumulated_force.z += distace_vec.z*a;
}
return accumulated_force;
}
下面是实现 norm2() 的代码:
template<typename T>
struct Vector3D
{
T x;
T y;
T z;
T norm2() const
{
return sqrt(x*x + y*y + z*z);
}
};
最后,下面是计算之前绘制的结果的代码:
std::vector<Real> x, y, z, energy;
x.resize(NSTEPS);
y.resize(NSTEPS);
z.resize(NSTEPS);
energy.resize(NSTEPS);
for(std::size_t i=0; i<NSTEPS; i++)
{
universe.simulation_step();
const Vector3D<Real> pos1 =
{
universe.get_positions()(0, 0),
universe.get_positions()(0, 1),
universe.get_positions()(0, 2)
};
const Vector3D<Real> pos2 =
{
universe.get_positions()(1, 0),
universe.get_positions()(1, 1),
universe.get_positions()(1, 2)
};
x[i] = pos2.x;
y[i] = pos2.y;
z[i] = pos2.z;
// Compute total kinetic energy of the system.
const Vector3D<Real> vel1 =
{
universe.get_velocities()(0, 0),
universe.get_velocities()(0, 1),
universe.get_velocities()(0, 2),
};
const Vector3D<Real> vel2 =
{
universe.get_velocities()(1, 0),
universe.get_velocities()(1, 1),
universe.get_velocities()(1, 2),
};
const Real mass1 = universe.get_masses()(0);
const Real mass2 = universe.get_masses()(1);
const Real spd1 = vel1.norm2();
const Real spd2 = vel2.norm2();
energy[i] = (spd1*spd1)*mass1*static_cast<float>(0.5);
energy[i] += (spd2*spd2)*mass2*static_cast<float>(0.5);
// Compute total potential energy
const Vector3D<Real> distance_vec =
{
pos1.x - pos2.x,
pos1.y - pos2.y,
pos1.z - pos2.z
};
const Real G = universe.get_sim_config().G;
energy[i] += -G*((mass1*mass2)/distance_vec.norm2());
}
类型为 。Real
float
我的理论
在数值积分方面,我是初学者(这就是我在这里发布这个问题的原因)。 但是,这里有一些关于可能出错的理论:
- 当涉及到 n>=2 时,Velocity Verlet 算法存在一些陷阱,我已经陷入了其中。
- 上面代码中的某处存在实现错误,我没有看到它。
- 浮点数计算导致的误差会因小幅移动而累积 的大身体。(可能不是这种情况,请参阅下面的编辑。
- 在尝试调试这个时,我在分子动力学模拟中遇到了这种情况。也许这就是这里发生的事情?
Energy drift
轨道似乎并没有分崩离析,但这不是我预期的结果 我想知道为什么。
有人能帮我解开这个谜团吗?
编辑:
我已经测试了双精度,唯一的变化是现在最小轨道质量的能量更加稳定。
现在,即使是最小的质量,也可以看到增加的趋势。 这表明这不是计算精度的问题。
答:
我发现了问题所在。
结果发现一个问题是逐个更新尸体的位置。加速度的计算假设在时间步长之间没有物体移动 然而,一个接一个地更新导致一些物体的位置来自 T,一些物体的位置来自 T + DT。 这个特定系统中的这种差异导致轨道物体速度的矢量差异不能理想地指向质心。 实际上,产生了一个小的切向分量,并将能量添加到系统中。误差很小,但随着时间的推移,它会累积并且可见。
我通过一次在所有物体上执行 verlet 算法的每个阶段来解决这个问题。以下是集成商的修订代码:
for(std::size_t i=0; i<get_size(); i++)
{
position(i, 0) += velocity(i, 0)*sim_config.timestep + acceleration(i, 0)*sim_config.timestep*sim_config.timestep*static_cast<Real>(0.5);
position(i, 1) += velocity(i, 1)*sim_config.timestep + acceleration(i, 1)*sim_config.timestep*sim_config.timestep*static_cast<Real>(0.5);
position(i, 2) += velocity(i, 2)*sim_config.timestep + acceleration(i, 2)*sim_config.timestep*sim_config.timestep*static_cast<Real>(0.5);
}
for(std::size_t i=0; i<get_size(); i++)
{
velocity(i, 0) += acceleration(i, 0)*sim_config.timestep*static_cast<Real>(0.5);
velocity(i, 1) += acceleration(i, 1)*sim_config.timestep*static_cast<Real>(0.5);
velocity(i, 2) += acceleration(i, 2)*sim_config.timestep*static_cast<Real>(0.5);
}
for(std::size_t i=0; i<get_size(); i++)
{
const Vector3D<Real> forces = compute_net_grawitational(i);
acceleration(i, 0) = forces.x/mass(i);
acceleration(i, 1) = forces.y/mass(i);
acceleration(i, 2) = forces.z/mass(i);
}
for(std::size_t i=0; i<get_size(); i++)
{
velocity(i, 0) += acceleration(i, 0)*sim_config.timestep*static_cast<Real>(0.5);
velocity(i, 1) += acceleration(i, 1)*sim_config.timestep*static_cast<Real>(0.5);
velocity(i, 2) += acceleration(i, 2)*sim_config.timestep*static_cast<Real>(0.5);
现在,即使对于最重的轨道天体,能量也没有增加:
能量仍在漂移,但随着时间的推移,差异似乎会平均化,并且相对于总值的变化很小。绘图是自动量程的,因此变化看起来很大,但它们在总能量的 +- 1% 以内,这对于我的应用来说是可以接受的。
在OP找到答案之前,出于好奇,我正在努力重现这个问题;我正在开始调试阶段(快速浏览第一个数据会发现至少存在一个主要错误),但我想我会放弃任务(假期快结束了)。在从硬盘中删除代码之前,我想无论如何都要把它放在这里,以备后代使用。
#include <cmath>
#include <limits>
#include <iostream>
#include <fstream>
#include <string>
#include <exception>
#include <vector>
//----------------------------------------------------------------------
// Some floating point facilities
//----------------------------------------------------------------------
// Some floating point facilities
constexpr inline bool is_zero(double x) noexcept
{
return std::fabs(x) < std::numeric_limits<double>::epsilon();
}
constexpr inline double ratio(const double n, const double d) noexcept
{
return is_zero(d) ? n/std::numeric_limits<double>::epsilon() : n/d;
}
////////////////////////////////////////////////////////////////////////
struct Vector3D ////////////////////////////////////////////////////////
{
double x, y, z;
Vector3D() noexcept : x(0.0), y(0.0), z(0.0) {}
Vector3D(const double X, const double Y, const double Z) noexcept
: x(X), y(Y), z(Z) {}
Vector3D operator+=(const Vector3D& other) noexcept
{
x+=other.x; y+=other.y; z+=other.z;
return *this;
}
Vector3D operator-() const noexcept
{
return Vector3D{-x, -y, -z};
}
friend Vector3D operator+(const Vector3D& v1, const Vector3D& v2) noexcept
{
return Vector3D{v1.x+v2.x, v1.y+v2.y, v1.z+v2.z};
}
friend Vector3D operator-(const Vector3D& v1, const Vector3D& v2) noexcept
{
return Vector3D{v1.x-v2.x, v1.y-v2.y, v1.z-v2.z};
}
friend Vector3D operator*(double k, const Vector3D& v) noexcept
{
return Vector3D{k*v.x, k*v.y, k*v.z};
}
friend Vector3D operator/(const Vector3D& v, double k) noexcept
{
return Vector3D{v.x/k, v.y/k, v.z/k};
}
friend std::ostream& operator<<(std::ostream& os, const Vector3D& v)
{
os << v.x << ',' << v.y << ',' << v.z;
return os;
}
double norm2() const noexcept { return x*x + y*y + z*z; }
double norm() const noexcept { return std::sqrt(norm2()); }
};
////////////////////////////////////////////////////////////////////////
class Body /////////////////////////////////////////////////////////////
{
public:
Body(const double m, const Vector3D& pos, const Vector3D& spd) noexcept
: i_mass(m), i_pos(pos), i_spd(spd) {}
double mass() const noexcept { return i_mass; }
const Vector3D& position() const noexcept { return i_pos; }
const Vector3D& speed() const noexcept { return i_spd; }
const Vector3D& acceleration() const noexcept { return i_acc; }
Vector3D distance_from(const Body& other) const noexcept
{
return position() - other.position();
}
double kinetic_energy() const noexcept
{// ½ m·V²
return 0.5 * i_mass * i_spd.norm2();
}
Vector3D gravitational_force_on(const Body& other, const double G) const noexcept
{// G · M·m / d²
Vector3D disp = distance_from(other);
double d = disp.norm();
return ratio(G * mass() * other.mass(), d*d*d) * disp;
}
double gravitational_energy_with(const Body& other, const double G) const noexcept
{// U = -G · mi·mj / d
double d = distance_from(other).norm();
return ratio(G * mass() * other.mass(), d);
}
void apply_force(const Vector3D& f)
{// Newton's law: F=ma
i_acc = f / i_mass;
}
void evolve_speed(const double dt) noexcept
{
i_spd += dt * i_acc;
}
void evolve_position(const double dt) noexcept
{
i_pos += dt * i_spd;
}
private:
double i_mass;
Vector3D i_pos, // Position [<space>]
i_spd, // Speed [<space>/<time>]
i_acc; // Acceleration [<space>/<time>²]
};
////////////////////////////////////////////////////////////////////////
class Universe /////////////////////////////////////////////////////////
{
public:
Universe(const double g) noexcept : G(g) {}
void evolve(const double dt) noexcept
{
for(Body& body : i_bodies)
{
body.evolve_speed(dt/2);
body.evolve_position(dt);
}
for( auto ibody=i_bodies.begin(); ibody!=i_bodies.end(); ++ibody )
{
Vector3D f = gravitational_force_on_body(ibody);
ibody->apply_force(f);
ibody->evolve_speed(dt/2);
}
}
double kinetic_energy() const noexcept
{// K = ∑ ½ m·V²
double Ek = 0.0;
for( const Body& body : i_bodies ) Ek += body.kinetic_energy();
return Ek;
}
double gravitational_energy() const noexcept
{// U = ½ ∑ -G · mi·mj / d
double Eu = 0.0;
for( auto ibody=i_bodies.begin(); ibody!=i_bodies.end(); ++ibody )
{// Iterate over all the other bodies
for( auto ibody2=i_bodies.begin(); ibody2!=ibody; ++ibody2 )
Eu += ibody->gravitational_energy_with(*ibody2,G);
for( auto ibody2=ibody+1; ibody2!=i_bodies.end(); ++ibody2 )
Eu += ibody->gravitational_energy_with(*ibody2,G);
}
return Eu/2;
}
double total_energy() const noexcept { return kinetic_energy() + gravitational_energy(); }
Vector3D center_of_mass() const noexcept
{// U = ∑ m·vpos / M
Vector3D c;
double total_mass = 0.0;
for( const Body& body : i_bodies )
{
c += body.mass() * body.position();
total_mass += body.mass();
}
return c/total_mass;
}
Vector3D gravitational_force_on_body( std::vector<Body>::const_iterator ibody ) const noexcept
{// F = ∑ G · m·mi / di²
Vector3D f;
// Iterate over all the other bodies
for( auto ibody2=i_bodies.begin(); ibody2!=ibody; ++ibody2 )
f += ibody2->gravitational_force_on(*ibody,G);
for( auto ibody2=ibody+1; ibody2!=i_bodies.end(); ++ibody2 )
f += ibody2->gravitational_force_on(*ibody,G);
return f;
}
void add_body(const double m, const Vector3D& pos, const Vector3D& spd)
{
i_bodies.emplace_back(m,pos,spd);
}
const std::vector<Body>& bodies() const noexcept { return i_bodies; }
const double G; // Gravitational constant
private:
std::vector<Body> i_bodies;
};
////////////////////////////////////////////////////////////////////////
class Simulation ///////////////////////////////////////////////////////
{
public:
class Data /////////////////////////////////////////////////////////
{
public:
struct Sample ///////////////////////////////////////////////////
{
double time;
std::vector<Body> bodies; // Bodies status
Vector3D Cm; // Center of mass
double Ek, // Kinetic energy
Eu; // Potential energy
Sample(const double t,
const std::vector<Body>& bd,
const Vector3D& cm,
const double ek,
const double eu) : time(t),
bodies(bd),
Cm(cm),
Ek(ek),
Eu(eu) {}
};
void init(const std::vector<std::string>::size_type N) noexcept
{
i_samples.clear();
i_samples.reserve(N);
}
void add(Sample&& s)
{
i_samples.push_back(s);
}
void save_to_file(std::string fpath) const
{
std::ofstream f (fpath, std::ios::out);
if(!f.is_open()) throw std::runtime_error("Unable to open file " + fpath);
//f << "time,total-energy\n";
//for(const Sample& s : i_samples)
// f << s.time << ',' << (s.Ek+s.Eu) << '\n';
f << "time,bodies-xyz-pos\n";
for(const Sample& s : i_samples)
{
f << s.time;
for(const Body& body : s.bodies)
f << ',' << body.position();
f << '\n';
}
}
const std::vector<Sample>& samples() const noexcept { return i_samples; }
private:
std::vector<Sample> i_samples;
};
// Total time Time increment
void execute(Universe& universe, const double T, const double dt)
{
auto N = static_cast<std::size_t>(T/dt + 1);
i_data.init(N);
double t = 0.0;
do {
universe.evolve(dt);
i_data.add( Data::Sample(t, universe.bodies(),
universe.center_of_mass(),
universe.kinetic_energy(),
universe.gravitational_energy() ) );
t += dt;
}
while(t<T);
}
const Data& data() const noexcept { return i_data; }
private:
Data i_data;
};
//----------------------------------------------------------------------
int main()
{
// Creating a universe with a certain gravitational constant
Universe universe(1); // Our universe: 6.67408E-11 m³/kg s²
// Adding bodies (mass, initial position and speed)
universe.add_body(1000, Vector3D(0,0,0), Vector3D(0,0,0));
universe.add_body(100, Vector3D(10,0,0), Vector3D(0,10,0));
// Simulation settings
Simulation sim;
const double T = 100; // Total time
const double dt = 0.001; // Iteration time
std::cout << "Simulating T=" << T << " dt=" << dt << "...";
sim.execute(universe, T, dt);
std::cout << "...Done";
// Now do something with the simulation data...
// ...Edit as desired
//sim.data().save_to_file("data.txt");
{// Energies
std::string fname = "energies.txt";
std::ofstream f (fname, std::ios::out);
if(!f.is_open()) throw std::runtime_error("Unable to open file " + fname);
f << "time,kinetic,potential,total\n";
for(const Simulation::Data::Sample& s : sim.data().samples())
f << s.time << ',' << s.Ek << ',' << s.Eu << ',' << (s.Ek+s.Eu) << '\n';
}
{// Positions of...
std::size_t idx = 1; // ...Second body
std::string fname = "body" + std::to_string(idx) + ".txt";
std::ofstream f (fname, std::ios::out);
if(!f.is_open()) throw std::runtime_error("Unable to open file " + fname);
f << "time,body" << idx << ".x,body" << idx << ".y,body" << idx << ".z\n";
for(const Simulation::Data::Sample& s : sim.data().samples())
f << s.time << ',' << (s.bodies.begin()+idx)->position() << '\n';
}
}
上一个:粒子碰撞模拟Python
评论