numpy matmul('at'/@ 运算符)的精度问题

issue with precision of numpy matmul ('at'/@ operator)

提问人:JackOfAllTrades 提问时间:6/29/2023 更新时间:6/29/2023 访问量:55

问:

我在一个更大的程序中追溯到这个问题。我在使用 numpy 更改乘法运算的顺序时出现比预期更大的错误。下面是一个独立的示例(末尾的实际代码很短,但我复制了显式矩阵以使其运行):

import numpy

M = numpy.array(
[[ 1.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
 [ 0.00000000e+00,  4.24142041e-01,  1.49421321e-08,  7.87081062e-09,  2.58494178e-08, -5.09534880e-02, -1.09351587e-08,  5.95629388e-10,  1.34707444e-08,  0.00000000e+00, -4.88069109e-01,  1.84060546e-08,  2.76013885e-08, -1.40665727e-08,  5.86332400e-02,  1.87260208e-08,  1.59941364e-08,  1.04757263e-08],
 [ 0.00000000e+00,  1.49421321e-08,  5.26397502e-16,  2.77281383e-16,  9.10651097e-16, -1.79504429e-09, -3.85235532e-16,  2.09834728e-17,  4.74561875e-16,  0.00000000e+00, -1.71942236e-08,  6.48428290e-16,  9.72371404e-16, -4.95552353e-16,  2.06559485e-09,  6.59700404e-16,  5.63458643e-16,  3.69050154e-16],
 [ 0.00000000e+00,  7.87081062e-09,  2.77281383e-16,  1.46058758e-16,  4.79688058e-16, -9.45544689e-10, -2.02923914e-16,  1.10531040e-17,  2.49976819e-16,  0.00000000e+00, -9.05710624e-09,  3.41561448e-16,  5.12199406e-16, -2.61033613e-16,  1.08805797e-09,  3.47499066e-16,  2.96803444e-16,  1.94398219e-16],
 [ 0.00000000e+00,  2.58494178e-08,  9.10651097e-16,  4.79688058e-16,  1.57539771e-15, -3.10537007e-09, -6.66445336e-16,  3.63007470e-17,  8.20977096e-16,  0.00000000e+00, -2.97454652e-08,  1.12176052e-15,  1.68217190e-15, -8.57289960e-16,  3.57341403e-09,  1.14126092e-15,  9.74765703e-16,  6.38445141e-16],
 [ 0.00000000e+00, -5.09534880e-02, -1.79504429e-09, -9.45544689e-10, -3.10537007e-09,  6.12119924e-03,  1.31367425e-09, -7.15547905e-11, -1.61828196e-09,  0.00000000e+00,  5.86332433e-02, -2.21117595e-09, -3.31583970e-09,  1.68986064e-09, -7.04379147e-03, -2.24961448e-09, -1.92142480e-09, -1.25848122e-09],
 [ 0.00000000e+00, -1.09351587e-08, -3.85235532e-16, -2.02923914e-16, -6.66445336e-16,  1.31367425e-09,  2.81928419e-16, -1.53564166e-17, -3.47300464e-16,  0.00000000e+00,  1.25833156e-08, -4.74541799e-16, -7.11614349e-16,  3.62662007e-16, -1.51167232e-09, -4.82791114e-16, -4.12358131e-16, -2.70083410e-16],
 [ 0.00000000e+00,  5.95629388e-10,  2.09834728e-17,  1.10531040e-17,  3.63007470e-17, -7.15547905e-11, -1.53564166e-17,  8.36451786e-19,  1.89171798e-17,  0.00000000e+00, -6.85403182e-10,  2.58479141e-17,  3.87610671e-17, -1.97539108e-17,  8.23395879e-11,  2.62972477e-17,  2.24608192e-17,  1.47112284e-17],
 [ 0.00000000e+00,  1.34707444e-08,  4.74561875e-16,  2.49976819e-16,  8.20977096e-16, -1.61828196e-09, -3.47300464e-16,  1.89171798e-17,  4.27830628e-16,  0.00000000e+00, -1.55010671e-08,  5.84575999e-16,  8.76619656e-16, -4.46754122e-16,  1.86219076e-09,  5.94738120e-16,  5.07973517e-16,  3.32708899e-16],
 [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  1.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
 [ 0.00000000e+00, -4.88069109e-01, -1.71942236e-08, -9.05710624e-09, -2.97454652e-08,  5.86332433e-02,  1.25833156e-08, -6.85403182e-10, -1.55010671e-08,  0.00000000e+00,  5.61631322e-01, -2.11802316e-08, -3.17614944e-08,  1.61866991e-08, -6.74704944e-02, -2.15484234e-08, -1.84047870e-08, -1.20546371e-08],
 [ 0.00000000e+00,  1.84060546e-08,  6.48428290e-16,  3.41561448e-16,  1.12176052e-15, -2.21117595e-09, -4.74541799e-16,  2.58479141e-17,  5.84575999e-16,  0.00000000e+00, -2.11802316e-08,  7.98748561e-16,  1.19778898e-15, -6.10432541e-16,  2.54444623e-09,  8.12633805e-16,  6.94081037e-16,  4.54604285e-16],
 [ 0.00000000e+00,  2.76013885e-08,  9.72371404e-16,  5.12199406e-16,  1.68217190e-15, -3.31583970e-09, -7.11614349e-16,  3.87610671e-17,  8.76619656e-16,  0.00000000e+00, -3.17614944e-08,  1.19778898e-15,  1.79618282e-15, -9.15393662e-16,  3.81560581e-09,  1.21861104e-15,  1.04083144e-15,  6.81716412e-16],
 [ 0.00000000e+00, -1.40665727e-08, -4.95552353e-16, -2.61033613e-16, -8.57289960e-16,  1.68986064e-09,  3.62662007e-16, -1.97539108e-17, -4.46754122e-16,  0.00000000e+00,  1.61866991e-08, -6.10432541e-16, -9.15393662e-16,  4.66514627e-16, -1.94455784e-09, -6.21044146e-16, -5.30441833e-16, -3.47425038e-16],
 [ 0.00000000e+00,  5.86332400e-02,  2.06559485e-09,  1.08805797e-09,  3.57341403e-09, -7.04379147e-03, -1.51167232e-09,  8.23395879e-11,  1.86219076e-09,  0.00000000e+00, -6.74704944e-02,  2.54444623e-09,  3.81560581e-09, -1.94455784e-09,  8.10543757e-03,  2.58867824e-09,  2.21102355e-09,  1.44816055e-09],
 [ 0.00000000e+00,  1.87260208e-08,  6.59700404e-16,  3.47499066e-16,  1.14126092e-15, -2.24961448e-09, -4.82791114e-16,  2.62972477e-17,  5.94738120e-16,  0.00000000e+00, -2.15484234e-08,  8.12633805e-16,  1.21861104e-15, -6.21044146e-16,  2.58867824e-09,  8.26760426e-16,  7.06146767e-16,  4.62507011e-16],
 [ 0.00000000e+00,  1.59941364e-08,  5.63458643e-16,  2.96803444e-16,  9.74765703e-16, -1.92142480e-09, -4.12358131e-16,  2.24608192e-17,  5.07973517e-16,  0.00000000e+00, -1.84047870e-08,  6.94081037e-16,  1.04083144e-15, -5.30441833e-16,  2.21102355e-09,  7.06146767e-16,  6.03129082e-16,  3.95033217e-16],
 [ 0.00000000e+00,  1.04757263e-08,  3.69050154e-16,  1.94398219e-16,  6.38445141e-16, -1.25848122e-09, -2.70083410e-16,  1.47112284e-17,  3.32708899e-16,  0.00000000e+00, -1.20546371e-08,  4.54604285e-16,  6.81716412e-16, -3.47425038e-16,  1.44816055e-09,  4.62507011e-16,  3.95033217e-16,  2.58736061e-16]]
)

A = numpy.array(
[[-0.00000000e+00, -7.49420654e-01,  2.36645133e-08,  2.83214009e-09, -6.52157725e-08,  9.00302357e-02,  2.07762711e-08, -3.93769333e-08, -3.96766769e-08,  0.00000000e+00, -6.51261884e-01,  2.35425627e-08,  3.46140156e-08, -1.89780598e-08,  7.82380887e-02,  2.51868179e-08,  2.13865316e-08,  1.44744812e-08],
 [ 3.05311332e-16,  3.63603065e-02,  1.77351557e-01,  1.52401227e-02, -1.31437146e-06,  3.02666853e-01, -5.56572048e-07, -1.60534678e-06, -4.65237579e-07,  4.42851120e-16,  1.11596525e-01, -8.16894013e-07,  9.17216520e-07, -2.96530450e-07,  9.28940840e-01,  3.66607356e-07, -9.91357211e-09, -2.27619767e-07],
 [-1.35525272e-20, -3.78275577e-05,  2.02944409e-04, -1.63077293e-05,  3.96391244e-01, -3.14375043e-04,  2.19758080e-01,  4.39817640e-01,  5.14025579e-01,  5.28070693e-20,  7.95260108e-06,  2.07648708e-01,  2.80669103e-01, -2.70743918e-02,  6.62922300e-05, -3.97663420e-01, -9.72844144e-02,  2.16082768e-01],
 [ 3.17637355e-22,  3.02225698e-07, -2.20579495e-06,  1.36032858e-05,  1.89121855e-01,  2.46318863e-06,  3.29601248e-01,  5.12358908e-01, -6.11878058e-01, -4.09855638e-21,  5.33328462e-08, -1.13839294e-01, -3.51810943e-01,  1.99126758e-01,  8.07593444e-07, -1.95429714e-01,  6.34840080e-02, -9.20601029e-03],
 [ 2.11758237e-22,  2.93821317e-07, -1.25434775e-06,  5.01041209e-07, -2.41225155e-01,  2.43924254e-06, -2.10410277e-01,  5.85509545e-01, -1.53207165e-01,  2.17127990e-22, -6.54394382e-08,  4.61741591e-02,  3.94747797e-01, -1.31509913e-01, -6.95848293e-07,  4.33611439e-01, -3.91114733e-01, -1.22481544e-01],
 [-3.17637355e-22,  1.30494444e-07, -6.28897449e-07, -5.69416759e-07, -4.89409426e-01,  8.16591863e-07,  2.25530164e-01,  1.36440113e-01,  1.56457139e-01,  6.09145504e-22, -1.46265910e-07, -7.06195107e-01,  1.76837517e-01, -1.84706615e-01, -1.10677502e-06, -2.65190566e-01,  1.75625222e-01,  3.53552474e-02],
 [-1.32348898e-23,  9.76074136e-09, -6.64706365e-08,  8.97102007e-08,  1.04453697e-02,  3.77554871e-08,  1.06780632e-01, -5.51530507e-02, -2.67072454e-02,  8.34309184e-23,  9.76785235e-09, -1.66380632e-01,  8.89817377e-02,  3.52794263e-01, -1.01989239e-07,  3.79383206e-01, -2.21311259e-02,  8.24771602e-01],
 [-2.64697796e-23, -3.81071470e-09, -1.52470457e-08,  2.31867964e-07,  1.61167689e-01,  1.21476062e-08,  4.62920198e-01, -6.30833114e-02,  1.55154734e-01, -6.81907803e-23,  3.36355606e-09, -1.04616530e-01,  3.04210903e-01,  4.74962450e-01, -3.26436018e-08,  3.66884819e-01,  1.89001475e-01, -4.81947218e-01],
 [ 3.30872245e-23, -3.82486279e-09,  4.57705305e-08, -1.53730823e-07, -1.09868035e-01,  9.49535030e-08, -6.11367953e-01,  2.09616196e-01,  6.92500565e-03, -1.51367999e-23, -1.37726681e-08,  2.39736500e-02,  1.68012777e-01,  5.33544789e-01, -7.45547417e-08, -2.35647324e-01,  4.47745356e-01, -2.63191932e-02],
 [ 0.00000000e+00,  2.95812127e-07, -4.47630753e-07, -6.75579326e-08, -5.05647373e-01,  2.12597159e-06,  3.29042472e-01,  1.47754834e-01,  4.59445954e-02, -4.42071975e-22,  7.64987025e-09,  5.88363526e-01, -7.18829924e-02, -1.25810121e-01, -3.22069856e-07,  1.14059812e-01,  4.67535857e-01,  1.15511821e-01],
 [-1.58818678e-22, -9.75341754e-08,  8.33486809e-07, -7.58797257e-07, -4.09124432e-01, -1.22408647e-06,  1.92397506e-01, -2.35640312e-01, -1.54747228e-01,  4.33075192e-22, -5.97477948e-08,  2.27856071e-01,  1.87299705e-01,  4.18606298e-01, -3.80248666e-07, -4.18737252e-01, -5.27560777e-01, -1.53387616e-02],
 [-3.17637355e-22, -2.73493680e-07,  1.20952799e-06, -1.15938669e-07,  2.19496103e-01, -2.38765220e-06,  5.63854677e-02, -2.33009173e-01, -5.12386378e-01, -1.42993918e-21,  1.90409524e-08,  7.60732865e-02,  6.64392889e-01, -2.87091516e-01, -3.51089068e-07, -1.51359887e-01,  2.62855799e-01,  1.00893426e-01],
 [ 0.00000000e+00, -9.82865059e-02,  5.33893628e-01, -8.64663760e-02, -1.52855583e-04, -8.18146794e-01, -8.26226436e-05, -1.62722671e-04, -1.97549957e-04,  1.91248595e-16,  2.01206803e-02, -7.98176370e-05, -1.09471810e-04,  1.05532690e-05,  1.67486593e-01,  1.53257887e-04,  3.75957532e-05, -8.28268558e-05],
 [ 3.46944695e-18,  9.86836968e-03, -3.21503728e-02, -9.96041972e-01,  9.89973139e-06,  8.21452559e-02,  7.87619622e-06,  1.42732304e-05,  4.19866736e-07,  1.08567995e-16, -5.53252953e-04,  2.12382866e-06,  5.52438245e-08,  2.06607768e-06, -4.60524623e-03, -8.61743850e-06, -7.93397037e-07,  3.40561040e-06],
 [ 0.00000000e+00,  5.60976585e-02,  8.26117626e-01,  1.38453289e-02,  1.66897114e-06,  4.66962542e-01,  5.21437516e-07,  1.01948728e-06,  6.95013869e-07, -3.76249560e-17, -3.69824778e-02,  1.99982217e-08,  2.01540087e-07,  1.03736187e-07, -3.07846242e-01, -1.07869609e-06, -3.39760103e-07,  4.32423200e-07]]
)

B = numpy.array(
[[ 0.00000000e+00, -1.00000000e+00,  1.06205003e-05],
 [ 6.51261884e-01,  2.02210886e-17,  2.58415811e-17],
 [ 2.29433542e-08,  1.34184985e-16, -2.74111890e-17],
 [ 1.20854772e-08,  7.60639281e-18,  2.96257867e-16],
 [ 3.96912801e-08,  5.98385402e-23, -1.93603571e-17],
 [-7.82380933e-02,  1.68322376e-16,  2.15108010e-16],
 [-1.67907242e-08, -1.39105759e-21, -1.31411424e-16],
 [ 9.14577381e-10, -9.94043901e-22, -1.02202642e-16],
 [ 2.06840670e-08,  2.09868713e-21,  2.04206049e-16],
 [ 0.00000000e+00,  1.06205003e-05,  1.00000000e+00],
 [-7.49420658e-01, -1.59224140e-17,  4.48478893e-17],
 [ 2.82621401e-08,  3.37439644e-21,  3.18670444e-16],
 [ 4.23813971e-08, -8.80703978e-22, -8.05157812e-17],
 [-2.15989497e-08, -1.22983410e-22, -1.35186018e-17],
 [ 9.00302037e-02, -1.32539872e-16,  3.73318253e-16],
 [ 2.87534420e-08,  1.37971615e-21,  1.40919484e-16],
 [ 2.45586865e-08,  5.08971450e-22,  5.55657960e-17],
 [ 1.60852746e-08,  1.11154797e-23, -1.54979207e-18]]
)

Z = A @ M @ B
print("original matrix\n", Z, '\n')

norm = max(max(row) for row in abs(Z))
print("largest element\n", norm, '\n')

Z1 = Z / norm
print("matrix normalized one way\n", Z1, '\n')

Z2 = A @ (M/norm) @ B
print("matrix normalized another way\n", Z1, '\n')

print("unexpected deviation \n", Z1-Z2, '\n')

下面是输出。我预计以两种不同“方式”归一化的矩阵在机器公差范围内(大约为 1e-16)相对于最大的元素 ~1 是相同的。那么,为什么我会收到 1e-7 的错误呢?我检查了所有 dtypes 都是 float64。感谢您的帮助!

original matrix
 [[-2.70976453e-10  2.77813727e-27 -2.66468642e-27]
 [ 3.14803157e-10 -3.05306629e-16  4.42854363e-16]
 [ 2.40140485e-14  1.35530880e-20  5.28069254e-20]
 [ 4.02675253e-16 -3.17680884e-22 -4.09855301e-21]
 [-5.36313469e-16 -2.11755931e-22  2.17130239e-22]
 [ 3.12972364e-16  3.17643824e-22  6.09142131e-22]
 [-2.99648801e-17  1.32357759e-23  8.34307778e-23]
 [-1.00370207e-16  2.64690554e-23 -6.81910614e-23]
 [ 4.76605198e-18 -3.30873853e-23 -1.51364485e-23]
 [-4.00415286e-16 -4.69502499e-27 -4.42071975e-22]
 [-1.67417098e-17  1.58823277e-22  4.33073505e-22]
 [ 5.36721887e-16  3.17622168e-22 -1.42994255e-21]
 [ 2.42670193e-11  2.03115564e-21  1.91248595e-16]
 [-6.86052564e-12 -3.46829390e-18  1.08568032e-16]
 [-8.03322460e-11 -3.99595601e-22 -3.76249560e-17]] 

largest element
 3.148031574328576e-10 

matrix normalized one way
 [[-8.60780609e-01  8.82499813e-18 -8.46461149e-18]
 [ 1.00000000e+00 -9.69833439e-07  1.40676595e-06]
 [ 7.62827434e-05  4.30525797e-11  1.67745857e-10]
 [ 1.27913346e-06 -1.00914135e-12 -1.30194152e-11]
 [-1.70364704e-06 -6.72661395e-13  6.89733358e-13]
 [ 9.94184324e-07  1.00902363e-12  1.93499371e-12]
 [-9.51860850e-08  4.20446097e-14  2.65025226e-13]
 [-3.18834816e-07  8.40812894e-14 -2.16614922e-13]
 [ 1.51397846e-08 -1.05104998e-13 -4.80822639e-14]
 [-1.27195448e-06 -1.49141610e-17 -1.40428063e-12]
 [-5.31815181e-08  5.04516152e-13  1.37569619e-12]
 [ 1.70494442e-06  1.00895484e-12 -4.54233866e-12]
 [ 7.70863275e-02  6.45214508e-12  6.07518033e-07]
 [-2.17930649e-02 -1.10173415e-08  3.44875931e-07]
 [-2.55182466e-01 -1.26935068e-12 -1.19518992e-07]] 

matrix normalized another way
 [[-8.60780609e-01  8.82499813e-18 -8.46461149e-18]
 [ 1.00000000e+00 -9.69833439e-07  1.40676595e-06]
 [ 7.62827434e-05  4.30525797e-11  1.67745857e-10]
 [ 1.27913346e-06 -1.00914135e-12 -1.30194152e-11]
 [-1.70364704e-06 -6.72661395e-13  6.89733358e-13]
 [ 9.94184324e-07  1.00902363e-12  1.93499371e-12]
 [-9.51860850e-08  4.20446097e-14  2.65025226e-13]
 [-3.18834816e-07  8.40812894e-14 -2.16614922e-13]
 [ 1.51397846e-08 -1.05104998e-13 -4.80822639e-14]
 [-1.27195448e-06 -1.49141610e-17 -1.40428063e-12]
 [-5.31815181e-08  5.04516152e-13  1.37569619e-12]
 [ 1.70494442e-06  1.00895484e-12 -4.54233866e-12]
 [ 7.70863275e-02  6.45214508e-12  6.07518033e-07]
 [-2.17930649e-02 -1.10173415e-08  3.44875931e-07]
 [-2.55182466e-01 -1.26935068e-12 -1.19518992e-07]] 

unexpected deviation 
 [[-1.85496826e-07 -3.37450100e-24 -4.46082542e-24]
 [-2.90512590e-08  0.00000000e+00 -2.11758237e-22]
 [ 3.36542580e-12  6.46234854e-27  0.00000000e+00]
 [-1.03382940e-13  2.01948392e-28 -1.61558713e-27]
 [-6.32965290e-14  0.00000000e+00 -2.01948392e-28]
 [ 7.05435233e-15  2.01948392e-28 -4.03896783e-28]
 [-6.90238453e-16  6.31088724e-30  0.00000000e+00]
 [ 6.56248400e-15 -1.26217745e-29  0.00000000e+00]
 [ 1.33816164e-16 -1.26217745e-29 -6.31088724e-30]
 [-1.09952637e-13 -2.98596179e-30 -4.03896783e-28]
 [-2.49491876e-14  0.00000000e+00 -2.01948392e-28]
 [ 1.41929230e-14  0.00000000e+00 -8.07793567e-28]
 [ 1.07272085e-08  2.81919955e-25  0.00000000e+00]
 [ 2.16769630e-10  1.65436123e-24  5.29395592e-23]
 [ 4.15586621e-09 -5.77572400e-26  0.00000000e+00]]
python numpy 精度 numpy-ndarray matmul

评论

1赞 hpaulj 6/29/2023
矩阵乘法是乘积的总和,如果数组很大,则该总和可能会累积精度误差。最近我探索了一个 SO,我发现使用 的差异比个体数的精度 (using ) 更大。math.fsummpmath
0赞 jared 6/29/2023
@hpaulj 分享链接?
2赞 hpaulj 6/29/2023
stackoverflow.com/questions/76551058/......
0赞 JackOfAllTrades 6/29/2023
@hpaulj谢谢。我会仔细阅读,但我不认为这是问题的根源。例如,假设 a 是 A 的元素量级,则乘积 A.B.C 中的 n x n 矩阵将累积 <~n^2 倍标量 a x b x c 的误差,依此类推,因为 A.B.C 的每个元素都是 n^2 项的总和。<~是因为个别翻牌的误差有随机符号。n 这里是 1 到 10 的量级,所以我至少应该得到 1e-14 的精度。
1赞 hpaulj 6/29/2023
对于大多数术语,相对误差约为 1e-7,对于小术语,相对误差约为 1e-16。 具有从 3e9 到 1e-6 的广泛值。((Z1-Z2)/Z1M/norm

答:

2赞 JackOfAllTrades 6/29/2023 #1

多亏了@hpaulj的提示,我想通了。M 具有由 A 和 B 投影出的大值(实际上,这就是意图)。首先将 M 除以范数会导致这些值激增并降低结果的精度,因为较小的期望结果是较大项取消后的剩余结果。

所以这不再是关于numpy或matmul的,但它仍然与编程有关,所以我想最好留下这个问题。

PS - 对于讨论的尾点,这意味着我对 @hpaulj 的第一条评论的回复的逻辑在“假设 a 是 A 元素的顺序上,依此类推”时崩溃了。当大部分被辅助因子投射出来时,这变得模棱两可。