在埃拉托色尼的分段筛中选择分段的大小

Choosing the size of the segment in segmented sieve of Eratosthenes

提问人:user140242 提问时间:11/22/2022 最后编辑:user140242 更新时间:11/28/2022 访问量:171

问:

我制作了这个使用轮因式分解的分段筛。在这里你可以找到解释。

通过将轮子尺寸设置为 210 并使用大小为 277140 = 6 * (11 * 13 * 17 * 19 + 1) = nB*(segment_size+1) 的线段向量,筛子的速度足以达到 n=10^9。uint8_t

如果要减少段内存,例如设置和大小为 58350 = 6 * (4 * 11 * 13 * 17 + 1) 的向量,但执行时间较长,约为双倍。segment_size_min=2048int64_t segment_size = 4;uint8_t



///     This is a implementation of the bit wheel segmented sieve 
///     with max base wheel size choice  30 , 210 , 2310

#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <stdint.h>

const int64_t n_PB_max = 5;
const int64_t PrimesBase[n_PB_max] = {2,3,5,7,11};

const int64_t del_bit[8] =
{
  ~(1 << 0),~(1 << 1),~(1 << 2),~(1 << 3),
  ~(1 << 4),~(1 << 5),~(1 << 6),~(1 << 7)
};

const int64_t bit_count[256] =
{
  0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
  1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};

int64_t Euclidean_Diophantine( int64_t coeff_a, int64_t  coeff_b)
{
    // return y in  Diophantine equation  coeff_a x + coeff_b y  = 1
    int64_t k=1;
    std::vector<int64_t> div_t; 
    std::vector<int64_t> rem_t;
    std::vector<int64_t> coeff_t;
    div_t.push_back(coeff_a);
    rem_t.push_back(coeff_b);
    coeff_t.push_back((int64_t) 0);
    div_t.push_back((int64_t) div_t[0] / rem_t[0]);
    rem_t.push_back((int64_t) div_t[0] % rem_t[0]);
    coeff_t.push_back((int64_t) 0);
    while (rem_t[k] > 1)
    {
        k++;
        div_t.push_back((int64_t) rem_t[k - 2] / rem_t[k - 1]);
        rem_t.push_back((int64_t) rem_t[k - 2] % rem_t[k - 1]);
        coeff_t.push_back((int64_t) 0);
    }
    k--;
    coeff_t[k] = -div_t[k + 1];
    if (k > 0)
        coeff_t[k - 1] = (int64_t) 1;
    while (k > 1)
    {
        k--;
        coeff_t[k - 1] = coeff_t[k + 1];
        coeff_t[k] += (int64_t) (coeff_t[k + 1] * (-div_t[k + 1]));
    }
    if (k == 1)
        return (int64_t) (coeff_t[k - 1] + coeff_t[k] * ( -div_t[k]));
    else
        return (int64_t) (coeff_t[0]);
}

int64_t segmented_bit_sieve_wheel(uint64_t n,int64_t max_bW)
{

    int64_t segment_size_min = 4096;   //can be scaled down to have smaller segments
    
    int64_t sqrt_n = (int64_t) std::sqrt(n);

    int64_t  count_p = (int64_t)0;

    int64_t n_PB = (int64_t) 3;    
    int64_t bW = (int64_t) 30;
    
    //get bW base wheel equal to p1*p2*...*pn <=min(max_bW,sqrt_n)  with n=n_PB
    while(n_PB < n_PB_max && (bW * PrimesBase[n_PB] <= std::min(max_bW , sqrt_n)))
    {
        bW *= PrimesBase[n_PB];
        n_PB++;
    }

    for (int64_t i = 0; i < n_PB; i++)
        if (n > (uint64_t) PrimesBase[i])
            count_p++;


    if (n > (uint64_t) (1 + PrimesBase[n_PB - 1])){

        int64_t k_end = (n < (uint64_t)bW) ? (int64_t) 2 :(int64_t) (n / (uint64_t) bW + 1);
        int64_t n_mod_bW = (int64_t) (n % (uint64_t) bW);
        int64_t k_sqrt = (int64_t) std::sqrt(k_end / bW) + 1;

        //find reduct residue set modulo bW
        std::vector<char> Remainder_i_t(bW + 1,true); 
        for (int64_t i = 0; i < n_PB; i++)
            for (int64_t j = PrimesBase[i]; j < bW + 1; j += PrimesBase[i])
                Remainder_i_t[j] = false;
        std::vector<int64_t> RW;
        for (int64_t j = 2; j < bW + 1; j++)
            if (Remainder_i_t[j] == true)
                RW.push_back(-bW + j);
        RW.push_back(1);
        int64_t  nR = RW.size();   //nR=phi(bW)

        std::vector<int64_t> C1(nR * nR);
        std::vector<int64_t> C2(nR * nR);
        for (int64_t j = 0; j < nR - 2; j++)
        {
            int64_t rW_t , rW_t1;
            rW_t1 = Euclidean_Diophantine(bW , -RW[j]);
            for (int64_t i = 0; i < nR; i++)
            {
                if (i == j)
                {
                    C2[nR * i + j] = 0;
                    C1[nR * i + j] = RW[j] + 1;
                }
                else if(i == nR - 3 - j)
                {
                    C2[nR * i + j] = 1;
                    C1[nR * i + j] = RW[j] - 1;
                }
                else
                {
                    rW_t = (int64_t) (rW_t1 * (-RW[i])) % bW;
                    if (rW_t > 1)
                        rW_t -= bW;
                    C1[nR * i + j] = rW_t + RW[j];
                    C2[nR * i + j] = (int64_t) (rW_t * RW[j]) / bW + 1;
                    if (i == nR - 1)
                        C2[nR * i + j] -= 1;
                }
            }
            C2[nR * j + nR - 2] = (int64_t) 1;
            C1[nR * j + nR - 2] = -(bW + RW[j]) - 1;
            C1[nR * j + nR - 1] = RW[j] + 1;
            C2[nR * j + nR - 1] = (int64_t )0;
        }
        for (int64_t i = nR - 2; i < nR; i++)
        {
            C2[nR * i + nR - 2] = (int64_t) 0;
            C1[nR * i + nR - 2] = -RW[i] - 1;
            C1[nR * i + nR - 1] = RW[i] + 1;
            C2[nR * i + nR - 1] = (int64_t) 0;
        }

        int64_t segment_size = 1; //can be scaled up to have larger segments
        int64_t p_mask_i = 3;    //number primes for pre-sieve vector mask 
        for (int64_t i = 0; i < p_mask_i; i++)
            segment_size *= (bW + RW[i]);
        while (segment_size < std::max(k_sqrt , segment_size_min) && p_mask_i < 7 )
        {
            segment_size *= (bW + RW[p_mask_i]);
            p_mask_i++;
        }

        int64_t  nB = nR / 8;     //nB number of byte for residue of congruence class equal to nR=8*nB        
        int64_t segment_size_b = nB * segment_size;
        
        //vector used for the first segment containing prime numbers less than sqrt(n)
        std::vector<uint8_t> Primes(nB + segment_size_b, 0xff);
 
        int64_t  p , pb , mb , mb_i , ib , i , jb , j , jp , k , kb;
        int64_t kmax = (int64_t) std::sqrt(segment_size / bW) + 1;
        //sieve for the first segment
        for (k = (int64_t)1; k  <= kmax; k++)
        {
            kb = nB * k;
            mb_i = kb * k * bW;     //nB * k * k  * bW     
            for (jb = 0; jb < nB; jb++)
            {
                for (j = 0; j < 8; j++)
                {
                    if(Primes[kb + jb] & (1 << j))
                    {
                        jp = j + jb * 8;
                        pb = nB * (bW * k + RW[jp]);
                        for (ib = 0; ib < nB; ib++)
                        {
                            for (i = 0; i < 8; i++)
                            {
                                mb = mb_i + nB * k * C1[(i + ib * 8) * nR + jp] + nB * C2[(i + ib * 8) * nR + jp];
                                for (; mb <= segment_size_b; mb += pb)
                                    Primes[mb + ib] &= del_bit[i];
                            }
                        }
                    }
                }
            }
        }
        //count the prime numbers in the first segment
        for (kb = nB; kb < std::min (nB + segment_size_b , nB * k_end); kb++)
            count_p += bit_count[Primes[kb]]; 
        if (kb == nB * k_end && kb <= segment_size_b && kb > 0)
            for (ib = 0; ib < nB; ib++)
                for (i = 0; i  < 8; i++)
                    if(Primes[kb + ib]& (1 << i) && RW[i + ib * 8] < (n_mod_bW - bW))
                        count_p++;
 
        if (k_end > segment_size) 
        {
            // vector mask pre-sieve multiples of primes bW+RW[j]  with 0<j<p_mask_i
            std::vector<uint8_t> Segment_i(nB+segment_size_b , 0xff);
            for (j = 0; j < p_mask_i; j++)
            {
                p = bW+RW[j];
                pb = p * nB;                
                for (ib = 0; ib < nB; ib++)
                {
                    for (i = 0; i < 8; i++)
                    {
                        mb = -segment_size + bW + C1[(i + ib  * 8) * nR + j] + C2[(i + ib * 8) * nR + j];
                        if (mb < 0)
                            mb=(mb % p + p) % p;
                        mb *= nB;                    
                        for (; mb <= segment_size_b; mb += pb)
                            Segment_i[mb + ib] &= del_bit[i];
                    }
                }
            }
            
            //vector used for subsequent segments of size (nB+segment_size_b)=nB*(1+segment_size)       
            std::vector<uint8_t> Segment_t(nB + segment_size_b);
            int64_t k_low , kb_low;
            for (k_low = segment_size; k_low < k_end; k_low += segment_size)
            {
                kb_low = k_low * nB;
                for (kb = (int64_t)0; kb < (nB + segment_size_b); kb++)
                    Segment_t[kb] = Segment_i[kb];
                
                kmax = (std::min(segment_size , (int64_t) std::sqrt((k_low + segment_size) / bW) + 2));
                j = p_mask_i;
                for(k = (int64_t) 1; k <= kmax; k++)
                {
                    kb = k * nB;
                    mb_i = -k_low + bW * k * k;    
                    for (jb = 0; jb < nB; jb++)
                    {
                        for (; j < 8; j++)
                        {
                            if (Primes[kb + jb] & (1 << j))
                            {
                                jp = j + jb * 8;
                                p = bW * k + RW[jp];
                                pb = p * nB;
                                for (ib = 0; ib < nB; ib++)
                                {
                                    for (i = 0; i < 8; i++)
                                    {
                                        mb = mb_i + k * C1[(i + ib * 8) * nR+jp] + C2[(i + ib * 8) * nR+jp];
                                        if (mb < 0)
                                            mb = (mb % p + p) % p;
                                        mb *= nB;
                                        for (; mb <= segment_size_b; mb += pb)
                                            Segment_t[mb + ib] &= del_bit[i];
                                    }
                                }
                            }
                        }
                        j = (int64_t) 0;
                    }
                }
                for ( kb = nB + kb_low; kb < std::min (kb_low + segment_size_b + nB , nB * k_end); kb++)
                    count_p += bit_count[Segment_t[kb - kb_low]];
            }
            if (kb == nB * k_end && kb - kb_low <= segment_size_b && kb - kb_low > (int64_t) 0)
                for (ib = 0; ib < nB; ib++)
                    for (i = 0; i < 8; i++)
                        if(Segment_t[kb - kb_low + ib]& (1 << i) && RW[i + ib * 8] < (n_mod_bW - bW))
                            count_p++;
        }
    }

    return count_p;
}

int main()
{
    int64_t n=1000000000;

    //segmented_bit_sieve_wheel(n,max_bW) with max base wheel size choice max_bW= 30 , 210 , 2310
    std::cout << " primes < " << n << ": "<< segmented_bit_sieve_wheel(n , 210) << std::endl;    

    return 0;
}


我期待相反的行为,有人可以帮助我了解细分市场的大小应该在速度方面进行优化吗?

编辑: 我想澄清一下,Euclidean_Diophantine函数仅在初始阶段用于查找数组 C1 和 C2,可以通过替换

rW_t1 = Euclidean_Diophantine(bW , -RW[j]);

int64_t j1=0;
while((RW[j] * RW[j1]) % bW != bW - 1 && j1 < nR - 1)
    j1++;
rW_t1 = RW[j1];

此外,通过使用带有 -O3 选项的 rextester.com g++ 进行编译来了解计时 绝对运行时间:0.51秒

因此,我通过在第二部分中删除来测试切换块所花费的时间

for(k = (int64_t) 1; k <= kmax; k++)
{
...
}

因此,我们得到的绝对运行时间等于 0.18s,这在两种配置中变化不大。

C++ 算法 primes

评论


答:

1赞 btilly 11/23/2022 #1

规则是基准,基准,基准。

但不仅仅是整体时间安排。时间在图表中的哪个位置?如果您使用更多功能,火焰图会有所帮助。但你不是。

因此,我建议您添加一些可能隐藏在 .您要做的是根据不同类型的活动将代码划分为多个部分。就像设置一个新块来筛分而不是筛分块一样。有一个计时器。每次切换时,请记录新的时间戳,添加上一个活动的经过时间,并保存新的时间戳以对当前活动进行计时。#ifdef

至于为什么较小的方块会更慢,那是因为你花时间筛选,而且每次切换方块时也要花时间计算东西的位置。从 277140 到 58350 的块,您最终切换块的频率约为 4.75 倍。如果您之前 (36.36%) 花费 1/3.75 的时间进行切换,那么现在您将花费相同的 2.75/3.75 在筛分上,加上 4.75/3.75 在切换块上,从而花费 2 倍的时间。

加快速度的一个想法是,您经常使用相同的第一个参数进行调用。(我认为参数是 210。如果您首先使用查找表来解决问题 mod 210,然后使用它来跳过大部分计算,可能会更快。Euclidean_Diophantine