提问人:user9875321__ 提问时间:11/9/2023 更新时间:11/10/2023 访问量:47
numba 中的 numpy nanmean
numpy nanmean in numba
问:
我正在尝试为 numba 编写一个更简单的 numpy.nanmean 版本。 这是我的代码:
from numba import jit, prange
import numpy as np
@jit(nopython=True)
def nanmeanMY(a, axis=None):
if a.ndim>1:
ncols = a.shape[1]
nrows = a.shape[0]
a = a.T.flatten()
res = np.zeros(ncols)
for i in prange(ncols):
col_no_nan = a[i*nrows:(i+1)*nrows]
res[i] = np.mean(col_no_nan[~np.isnan(col_no_nan)])
return res
else:
return np.mean(a[~np.isnan(a)])
该代码应该检查您是在处理向量还是矩阵,并给出 if 矩阵的列均值。 使用测试矩阵
X = np.array([[1,2], [3,4]])
nanmeanMY(X)
我收到以下错误:
Traceback (most recent call last):
Cell In[157], line 1
nanmeanMY(a)
File ~\anaconda3\Lib\site-packages\numba\core\dispatcher.py:468 in _compile_for_args
error_rewrite(e, 'typing')
File ~\anaconda3\Lib\site-packages\numba\core\dispatcher.py:409 in error_rewrite
raise e.with_traceback(None)
TypingError: No implementation of function Function(<built-in function getitem>) found for signature:
getitem(array(int32, 2d, C), array(bool, 2d, C))
There are 22 candidate implementations:
- Of which 20 did not match due to:
Overload of function 'getitem': File: <numerous>: Line N/A.
With argument(s): '(array(int32, 2d, C), array(bool, 2d, C))':
No match.
- Of which 2 did not match due to:
Overload in function 'GetItemBuffer.generic': File: numba\core\typing\arraydecl.py: Line 209.
With argument(s): '(array(int32, 2d, C), array(bool, 2d, C))':
Rejected as the implementation raised a specific error:
NumbaTypeError: Multi-dimensional indices are not supported.
raised from C:\Users\*****\anaconda3\Lib\site-packages\numba\core\typing\arraydecl.py:89
During: typing of intrinsic-call at C:\Users\*****\AppData\Local\Temp\ipykernel_10432\1652358289.py (22)
这里有什么问题?
答:
1赞
ken
11/10/2023
#1
显然,因为您重用了变量,numba 无法正确推断变量的类型。a
a
不要重用变量,而是创建一个新变量。
@jit(nopython=True)
def nanmeanMY(a):
if a.ndim > 1:
ncols = a.shape[1]
nrows = a.shape[0]
a_flatten = a.T.flatten() # Renamed a to a_flatten.
res = np.zeros(ncols)
for i in prange(ncols):
col_no_nan = a_flatten[i * nrows : (i + 1) * nrows] # Use a_flatten.
res[i] = np.mean(col_no_nan[~np.isnan(col_no_nan)])
return res
else:
return np.mean(a[~np.isnan(a)])
评论
0赞
user9875321__
11/14/2023
效果很好!
评论