如何在 Gekko 中强制执行“!=”(编写数独求解器)

How to Enforce '!=' in Gekko (Writing a Sudoku Solver)

提问人:phdavis1027 提问时间:10/22/2023 更新时间:10/24/2023 访问量:55

问:

我正在用 Gekko 编写一个数独求解器(主要是为了好玩,我知道有更好的工具。 我想表达每行、每列和每正方形中的变量最不同的约束 彼此。代码如下:

import itertools

from gekko import GEKKO

SQUARES = [
    ( (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) ),
    ( (0, 3), (0, 4), (0, 5), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5) ),
    ( (0, 6), (0, 7), (0, 8), (1, 6), (1, 7), (1, 8), (2, 6), (2, 7), (2, 8) ),
    ( (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (5, 0), (5, 1), (5, 2) ),
    ( (3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5) ),
    ( (3, 6), (3, 7), (3, 8), (4, 6), (4, 7), (4, 8), (5, 6), (5, 7), (5, 8) ),
    ( (6, 0), (6, 1), (6, 2), (7, 0), (7, 1), (7, 2), (8, 0), (8, 1), (8, 2) ),
    ( (6, 3), (6, 4), (6, 5), (7, 3), (7, 4), (7, 5), (8, 3), (8, 4), (8, 5) ),
    ( (6, 6), (6, 7), (6, 8), (7, 6), (7, 7), (7, 8), (8, 6), (8, 7), (8, 8) )
]
BOARD_DIMS = (9, 9)
PRE_FILLED_SQUARES = [
    (0, 1, 2), (0, 3, 5), (0, 5, 1),
    (0, 7, 9), (1, 0, 8), (1, 3, 2),
    (1, 3, 2), (1, 5, 3), (1, 8, 6),
    (2, 1, 3), (2, 4, 6), (2, 7, 7),
    (3, 2, 1), (3, 6, 6), (4, 0, 5),
    (4, 1, 4), (4, 7, 1), (4, 8, 9),
    (5, 2, 2), (5, 6, 7), (6, 1, 9),
    (6, 4, 3), (6, 7, 8), (7, 0, 2),
    (7, 3, 8), (7, 5, 4), (7, 8, 7),
    (8, 1, 1), (8, 3, 9), (8, 5, 7),
    (8, 7, 6)
]

m = GEKKO()
m.options.SOLVER = 1
board = m.Array(m.Var, BOARD_DIMS, lb=1, ub=9, integer=True, value=1)

for i, j, val in PRE_FILLED_SQUARES:
    board[i,j].value = val
    m.Equation(board[i,j]==val)

for row in range(BOARD_DIMS[0]):
    for i, j in itertools.combinations(range(BOARD_DIMS[1]), r=2):
        diff = m.if3(board[row, i] - board[row, j], -1, 1) 
        diff_prime = m.if3(board[row, j] - board[row, i], -1, 1)
        m.Equation(diff + diff_prime == 0)


for col in range(BOARD_DIMS[1]):
    for i, j in itertools.combinations(range(BOARD_DIMS[0]), r=2):
        diff = m.if3(board[i, col] - board[j, col], -1, 1) 
        diff_prime = m.if3(board[j, col] - board[i, col], -1, 1)
        m.Equation(diff + diff_prime == 0)

for square in SQUARES: 
    for (y, x), (y_prime, x_prime) in itertools.combinations(square, r=2):
        diff = m.if3(board[y, x] - board[y_prime, x_prime], -1, 1) 
        diff_prime = m.if3(board[y_prime, x_prime] - board[y, x], -1, 1)
        m.Equation(diff + diff_prime == 0)

m.solve(disp=True)
print(board)

目前,求解器遵循我填写的预填充方块,但每隔一个方块填充 .目前使用二减法的不等式表达式是因为尝试类似 的操作会产生错误,即“int”类型的对象没有长度。1.0m.Equation(board[row,j] != board[row,i])

蟒蛇 数独 壁虎

评论

0赞 buran 10/22/2023
m.Equation(board[row,j] != board[row,i])该错误甚至不存在于您发布的代码中。check 如何提问
0赞 phdavis1027 10/22/2023
没错,我只是想解释为什么我没有做显而易见的事情。也就是说,我尝试了显而易见的事情,翻译对我大喊大叫。

答:

1赞 John Hedengren 10/24/2023 #1

中没有(不相等)的约束。您可以将每行的总和设置为每个值可以位于 或 的位置。如果该值等于,则在该单元格中填充相应的值。!=gekko1011

这是一个用 PuLP 编写的 MILP 版本,并使用 MILP CBC 求解器进行求解(归功于 TowardsDataScience)

import pulp as plp

def add_default_sudoku_constraints(prob, grid_vars, rows, cols, grids, values):
    
    # Constraint to ensure only one value is filled for a cell
    for row in rows:
        for col in cols:
                prob.addConstraint(plp.LpConstraint(e=plp.lpSum([grid_vars[row][col][value] for value in values]),
                                        sense=plp.LpConstraintEQ, rhs=1, name=f"constraint_sum_{row}_{col}"))


    # Constraint to ensure that values from 1 to 9 is filled only once in a row        
    for row in rows:
        for value in values:
            prob.addConstraint(plp.LpConstraint(e=plp.lpSum([grid_vars[row][col][value]*value  for col in cols]),
                                        sense=plp.LpConstraintEQ, rhs=value, name=f"constraint_uniq_row_{row}_{value}"))

    # Constraint to ensure that values from 1 to 9 is filled only once in a column        
    for col in cols:
        for value in values:
            prob.addConstraint(plp.LpConstraint(e=plp.lpSum([grid_vars[row][col][value]*value  for row in rows]),
                                        sense=plp.LpConstraintEQ, rhs=value, name=f"constraint_uniq_col_{col}_{value}"))


    # Constraint to ensure that values from 1 to 9 is filled only once in the 3x3 grid       
    for grid in grids:
        grid_row  = int(grid/3)
        grid_col  = int(grid%3)

        for value in values:
            prob.addConstraint(plp.LpConstraint(e=plp.lpSum([grid_vars[grid_row*3+row][grid_col*3+col][value]*value  for col in range(0,3) for row in range(0,3)]),
                                        sense=plp.LpConstraintEQ, rhs=value, name=f"constraint_uniq_grid_{grid}_{value}"))

def add_diagonal_sudoku_constraints(prob, grid_vars, rows, cols, values):
    
        # Constraint from top-left to bottom-right - numbers 1 - 9 should not repeat
        for value in values:
                prob.addConstraint(plp.LpConstraint(e=plp.lpSum([grid_vars[row][row][value]*value  for row in rows]),
                                            sense=plp.LpConstraintEQ, rhs=value, name=f"constraint_uniq_diag1_{value}"))


        # Constraint from top-right to bottom-left - numbers 1 - 9 should not repeat
        for value in values:
                prob.addConstraint(plp.LpConstraint(e=plp.lpSum([grid_vars[row][len(rows)-row-1][value]*value  for row in rows]),
                                            sense=plp.LpConstraintEQ, rhs=value, name=f"constraint_uniq_diag2_{value}"))

def add_prefilled_constraints(prob, input_sudoku, grid_vars, rows, cols, values):
    for row in rows:
        for col in cols:
            if(input_sudoku[row][col] != 0):
                prob.addConstraint(plp.LpConstraint(e=plp.lpSum([grid_vars[row][col][value]*value  for value in values]), 
                                                    sense=plp.LpConstraintEQ, 
                                                    rhs=input_sudoku[row][col],
                                                    name=f"constraint_prefilled_{row}_{col}"))

def extract_solution(grid_vars, rows, cols, values):
    solution = [[0 for col in cols] for row in rows]
    grid_list = []
    for row in rows:
        for col in cols:
            for value in values:
                if plp.value(grid_vars[row][col][value]):
                    solution[row][col] = value 
    return solution

def print_solution(solution, rows,cols):
    # Print the final result
    print(f"\nFinal result:")

    print("\n\n+ ----------- + ----------- + ----------- +",end="")
    for row in rows:
        print("\n",end="\n|  ")
        for col in cols:
            num_end = "  |  " if ((col+1)%3 == 0) else "   "
            print(solution[row][col],end=num_end)

        if ((row+1)%3 == 0):
            print("\n\n+ ----------- + ----------- + ----------- +",end="")


def solve_sudoku(input_sudoku, diagonal = False ):
    # Create the linear programming problem
    prob = plp.LpProblem("Sudoku_Solver")

    rows = range(0,9)
    cols = range(0,9)
    grids = range(0,9)
    values = range(1,10)

    # Decision Variable/Target variable
    grid_vars = plp.LpVariable.dicts("grid_value", (rows,cols,values), cat='Binary') 

    # Set the objective function
    # Sudoku works only on the constraints - feasibility problem 
    # There is no objective function that we are trying maximize or minimize.
    # Set a dummy objective
    objective = plp.lpSum(0)
    prob.setObjective(objective)

    # Create the default constraints to solve sudoku
    add_default_sudoku_constraints(prob, grid_vars, rows, cols, grids, values)

    # Add the diagonal constraints if flag is set
    if (diagonal):
        add_diagonal_sudoku_constraints(prob, grid_vars, rows, cols, values)
        
    # Fill the prefilled values from input sudoku as constraints
    add_prefilled_constraints(prob, input_sudoku, grid_vars, rows, cols, values)


    # Solve the problem
    prob.solve()

    # Print the status of the solution
    solution_status = plp.LpStatus[prob.status]
    print(f'Solution Status = {plp.LpStatus[prob.status]}')

    # Extract the solution if an optimal solution has been identified
    if solution_status == 'Optimal':
        solution = extract_solution(grid_vars, rows, cols, values)
        print_solution(solution, rows,cols)


normal_sudoku = [
                    [3,0,0,8,0,0,0,0,1],
                    [0,0,0,0,0,2,0,0,0],
                    [0,4,1,5,0,0,8,3,0],
                    [0,2,0,0,0,1,0,0,0],
                    [8,5,0,4,0,3,0,1,7],
    
                    [0,0,0,7,0,0,0,2,0],
                    [0,8,5,0,0,9,7,4,0],
                    [0,0,0,1,0,0,0,0,0],
                    [9,0,0,0,0,7,0,0,6]
                ]


solve_sudoku(input_sudoku=normal_sudoku, diagonal=False)

diagonal_sudoku = [
                    [0,3,0,2,7,0,0,0,0],
                    [0,0,0,0,0,0,0,0,0],
                    [8,0,0,0,0,0,0,0,0],
                    [5,1,0,0,0,0,0,8,4],
                    [4,0,0,5,9,0,0,7,0],
                    [2,9,0,0,0,0,0,1,0],
                    [0,0,0,0,0,0,1,0,5],
                    [0,0,6,3,0,8,0,0,7],
                    [0,0,0,0,0,0,3,0,0]
                ]
solve_sudoku(input_sudoku=diagonal_sudoku, diagonal=True)

使用 CBC 求解器,求解时间非常快。

+ ----------- + ----------- + ----------- +

|  6   3   9  |  2   7   4  |  8   5   1  |

|  1   4   2  |  6   8   5  |  7   3   9  |

|  8   7   5  |  1   3   9  |  6   4   2  |

+ ----------- + ----------- + ----------- +

|  5   1   3  |  7   6   2  |  9   8   4  |

|  4   6   8  |  5   9   1  |  2   7   3  |

|  2   9   7  |  8   4   3  |  5   1   6  |

+ ----------- + ----------- + ----------- +

|  3   8   4  |  9   2   7  |  1   6   5  |

|  9   5   6  |  3   1   8  |  4   2   7  |

|  7   2   1  |  4   5   6  |  3   9   8  |

+ ----------- + ----------- + ----------- +

使用两种建模语言的类似语法,将这个等效问题转换为 gekko 很容易:

from gekko import GEKKO

def add_default_sudoku_constraints(m, grid_vars, rows, cols, grids, values):
    for row in rows:
        for col in cols:
            m.Equation(sum([grid_vars[row][col][value-1] \
                       for value in values]) == 1)

    for row in rows:
        for value in values:
            m.Equation(sum([grid_vars[row][col][value-1]*value \
                       for col in cols]) == value)

    for col in cols:
        for value in values:
            m.Equation(sum([grid_vars[row][col][value-1]*value \
                       for row in rows]) == value)

    for grid in grids:
        grid_row  = int(grid/3)
        grid_col  = int(grid%3)
        for value in values:
            m.Equation(sum([grid_vars[grid_row*3+row][grid_col*3+col][value-1]*value \
                           for col in range(0,3) for row in range(0,3)]) == value)

def add_diagonal_sudoku_constraints(m, grid_vars, rows, cols, values):
    for value in values:
        m.Equation(sum([grid_vars[row][row][value-1]*value for row in rows]) == value)
        m.Equation(sum([grid_vars[row][len(rows)-row-1][value-1]*value \
                        for row in rows]) == value)

def add_prefilled_constraints(m, input_sudoku, grid_vars, rows, cols, values):
    for row in rows:
        for col in cols:
            if(input_sudoku[row][col] != 0):
                m.Equation(sum([grid_vars[row][col][value-1]*value \
                        for value in values]) == input_sudoku[row][col])

def extract_solution(grid_vars, rows, cols, values):
    solution = [[0 for col in cols] for row in rows]
    for row in rows:
        for col in cols:
            for v, value in enumerate(values):
                if int(grid_vars[row][col][v].value[0]) == 1:
                    solution[row][col] = value
    return solution

def print_solution(solution, rows, cols):
    print(f"\nFinal result:")
    print("\n\n+ ----------- + ----------- + ----------- +",end="")
    for row in rows:
        print("\n",end="\n|  ")
        for col in cols:
            num_end = "  |  " if ((col+1)%3 == 0) else "   "
            print(solution[row][col],end=num_end)

        if ((row+1)%3 == 0):
            print("\n\n+ ----------- + ----------- + ----------- +",end="")

def solve_sudoku(input_sudoku, diagonal=False):
    m = GEKKO(remote=True)

    rows = range(0,9)
    cols = range(0,9)
    grids = range(0,9)
    values = range(1,10)

    grid_vars = [[[m.Var(lb=0, ub=1, integer=True) \
             for _ in values] for _ in cols] for _ in rows]

    add_default_sudoku_constraints(m, grid_vars, rows, cols, grids, values)

    if diagonal:
        add_diagonal_sudoku_constraints(m, grid_vars, rows, cols, values)

    add_prefilled_constraints(m, input_sudoku, grid_vars, rows, cols, values)

    m.options.SOLVER = 3
    m.solve(disp=True)

    m.solver_options = ['minlp_gap_tol 1.0e-2',\
                        'minlp_maximum_iterations 1000',\
                        'minlp_max_iter_with_int_sol 500',\
                        'minlp_branch_method 1']
    m.options.SOLVER = 1
    m.solve(disp=True)

    solution = extract_solution(grid_vars, rows, cols, values)
    print_solution(solution, rows, cols)

normal_sudoku = [
    [3,0,0,8,0,0,0,0,1],
    [0,0,0,0,0,2,0,0,0],
    [0,4,1,5,0,0,8,3,0],
    [0,2,0,0,0,1,0,0,0],
    [8,5,0,4,0,3,0,1,7],
    [0,0,0,7,0,0,0,2,0],
    [0,8,5,0,0,9,7,4,0],
    [0,0,0,1,0,0,0,0,0],
    [9,0,0,0,0,7,0,0,6]
]

solve_sudoku(input_sudoku=normal_sudoku, diagonal=False)

diagonal_sudoku = [
    [0,3,0,2,7,0,0,0,0],
    [0,0,0,0,0,0,0,0,0],
    [8,0,0,0,0,0,0,0,0],
    [5,1,0,0,0,0,0,8,4],
    [4,0,0,5,9,0,0,7,0],
    [2,9,0,0,0,0,0,1,0],
    [0,0,0,0,0,0,1,0,5],
    [0,0,6,3,0,8,0,0,7],
    [0,0,0,0,0,0,3,0,0]
]

solve_sudoku(input_sudoku=diagonal_sudoku, diagonal=True)

但是,APOPT 求解器是一种非线性混合整数规划 (MINLP) 求解器,对于线性混合整数问题,它比专用的 MILP 求解器慢得多。有时,使用这些求解器选项会有所帮助:

    m.solver_options = ['minlp_gap_tol 1.0e-2',\
                        'minlp_maximum_iterations 1000',\
                        'minlp_max_iter_with_int_sol 500',\
                        'minlp_branch_method 1']

但是,在大多数情况下,最好使用专用的 MILP 求解器。

评论

1赞 phdavis1027 10/25/2023
这很整洁,谢谢!顺便说一句,你对为什么我的版本生成了一个全 1(预填充的方块除外)的解决方案有任何见解吗?即使我表达不平等的尝试失败了,我猜它至少会产生一些随机性。
0赞 John Hedengren 10/27/2023
如果可能是由于具有以下约束的求解器容差: - 求解器使用连续值来查找整数解。有一个整数容差,所以和是相同的。回退常数可能很有帮助,例如,可以更好地定义开关点,以避免出现 versus 的问题。diff = m.if3(board[row, i] - board[row, j], -1, 1)>>=diff = m.if3(board[row, i] - board[row, j]-0.1, -1, 1)<<=