提问人:morgy2190 提问时间:11/12/2023 更新时间:11/12/2023 访问量:46
为什么我的 nbody 求解器让地球沿直线而不是轨道移动?
Why does my nbody solver have the earth moving in a straight line instead of an orbit?
问:
我正在为一个物理项目制作一个 Nbody 求解器,我已经到了绘制地球围绕太阳的位置的地步。然而,当我这样做时,地球只是沿直线远离太阳,而不是执行轨道。我的加速度计算中是否缺少某些东西导致了这种情况?先谢谢你。
import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u
import astropy.constants as c
import sys
import time
from mpl_toolkits.mplot3d import Axes3D
#making a class for Celestial Objects
class CelestialObjects():
def __init__(self,mass,pos_vec,vel_vec,name=None, has_units=True):
self.name=name
self.has_units=has_units
if self.has_units:
self.mass=mass.cgs
self.pos=pos_vec.cgs.value
self.vel=vel_vec.cgs.value
else:
self.mass=mass
#3d array for position of body in 3d space in AU
self.pos=pos_vec
#3d array for velocity of body in 3d space in km/s
self.vel=vel_vec
def return_vec(self):
return np.concatenate((self.pos,self.vel))
def return_name(self):
return self.name
def return_mass(self):
if self.has_units:
return self.mass.cgs.value
else:
return self.mass
#set up first instance of a celestial object, Earth
Earth=CelestialObjects(name='Earth',
pos_vec=np.array([0,1,0])*u.AU,
vel_vec=np.array([0,30,0])*u.km/u.s,
mass=1.0*c.M_earth)
#set up second instance of a celestial object, the Sun
Sun=CelestialObjects(name='Sun',
pos_vec=np.array([0,0,0])*u.AU,
vel_vec=np.array([0,0,0])*u.km/u.s,
mass=1*u.Msun)
bodies=[Earth,Sun]
#making a class for system
class Simulation():
def __init__(self,bodies,has_units=True):
self.has_units=has_units
self.bodies=bodies
self.Nbodies=len(self.bodies)
self.Ndim=6
self.quant_vec=np.concatenate(np.array([i.return_vec() for i in self.bodies]))
self.mass_vec=np.array([i.return_mass() for i in self.bodies])
self.name_vec=[i.return_name() for i in self.bodies]
def set_diff_eqs(self,calc_diff_eqs,**kwargs):
self.diff_eqs_kwargs=kwargs
self.calc_diff_eqs=calc_diff_eqs
def rk4(self,t,dt):
k1= dt* self.calc_diff_eqs(t,self.quant_vec,self.mass_vec,**self.diff_eqs_kwargs)
k2=dt*self.calc_diff_eqs(t+dt*0.5,self.quant_vec+0.5*k1,self.mass_vec,**self.diff_eqs_kwargs)
k3=dt*self.calc_diff_eqs(t+dt*0.5,self.quant_vec+0.5*k2,self.mass_vec,**self.diff_eqs_kwargs)
k4=dt*self.calc_diff_eqs(t+dt,self.quant_vec+k3,self.mass_vec,**self.diff_eqs_kwargs)
y_new=self.quant_vec+((k1+2*k2+2*k3+k4)/6)
return y_new
def run(self,T,dt,t0=0):
if not hasattr(self,'calc_diff_eqs'):
raise AttributeError('You must set a diff eq solver first.')
if self.has_units:
try:
_=t0.unit
except:
t0=(t0*T.unit).cgs.value
T=T.cgs.value
dt=dt.cgs.value
self.history=[self.quant_vec]
clock_time=t0
nsteps=int((T-t0)/dt)
start_time=time.time()
for step in range(nsteps):
sys.stdout.flush()
sys.stdout.write('Integrating: step = {}/{}| Simulation Time = {}'.format(step,nsteps,round(clock_time,3))+'\r')
y_new=self.rk4(0,dt)
self.history.append(y_new)
self.quant_vec=y_new
clock_time+=dt
runtime=time.time()-start_time
print('\n')
print('Simulation completed in {} seconds'.format(runtime))
self.history=np.array(self.history)
def nbody_solver(t,y,masses):
N_bodies=int(len(y)/6)
solved_vector=np.zeros(y.size)
distance=[]
for i in range(N_bodies):
ioffset=i * 6
for j in range(N_bodies):
joffset=j * 6
solved_vector[ioffset]=y[ioffset+3]
solved_vector[ioffset+1]=y[ioffset+4]
solved_vector[ioffset+2]=y[ioffset+5]
if i != j:
dx= y[ioffset]-y[joffset]
dy=y[ioffset+1]-y[joffset+1]
dz=y[ioffset+2]-y[joffset+2]
r=(dx**2+dy**2+dz**2)**0.5
ax=(-c.G.cgs*masses[j]/r**3)*dx
ay=(-c.G.cgs*masses[j]/r**3)*dy
az=(-c.G.cgs*masses[j]/r**3)*dz
ax=ax.value
ay=ay.value
az=az.value
solved_vector[ioffset+3]+=ax
solved_vector[ioffset+4]+=ay
solved_vector[ioffset+5]+=az
return solved_vector
simulation=Simulation(bodies)
simulation.set_diff_eqs(nbody_solver)
simulation.run(365*u.day,1*u.hr)
earth_position = simulation.history[:, :3] # Extracting position for Earth
sun_position = simulation.history[:, 6:9] # Extracting position for Sun
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Plot the trajectories
ax.plot(earth_position[:, 0], earth_position[:, 1], earth_position[:, 2], label='Earth')
ax.plot(sun_position[:, 0], sun_position[:, 1], sun_position[:, 2], label='Sun')
# Add labels and title
ax.set_xlabel('X (AU)')
ax.set_ylabel('Y (AU)')
ax.set_zlabel('Z (AU)')
ax.set_title('Trajectories of Earth and Sun')
# Add a legend
ax.legend()
# Show the plot
plt.show()
答:
3赞
tetris programming
11/12/2023
#1
在我看来,它的工作原理:
你可能应该给你的“地球”一个与你的太阳引力成全倾轴的起始速度。否则地球会直接飞向太阳!(例如)swap vel_vec=np.array([0, 30, 0])
vel_vec=np.array([30, 0, 0])
# set up first instance of a celestial object, Earth
Earth = CelestialObjects(name='Earth',
pos_vec=np.array([0, 1, 0]) * u.AU,
vel_vec=np.array([30, 0, 0]) * u.km / u.s,
mass=1.0 * c.M_earth)
评论
0赞
morgy2190
11/12/2023
我真的很爱你,非常感谢你。你能解释一下为什么 x 中的速度是垂直的吗?我有点困惑为什么会这样。
0赞
tetris programming
11/12/2023
想象一下,您有一个坐标为 XYZ 的空间。你的地球位于 pos_vec =np.array([x=0, y=1, z=0]) 上。如果你现在将速度设置为vel_vec =np.array([x=0, y=30, z=0]),这意味着你的地球在y轴上直线飞向太阳或远离太阳。但是,如果将速度添加到 x 方向,它不会朝太阳中心的方向飞行,而是会在 x 方向上垂直于 y 轴移动。我希望这会有所帮助。只要玩弄这些值或z值,你就会有一种感觉。
评论