提问人:Python 提问时间:11/17/2023 最后编辑:ChrisPython 更新时间:11/20/2023 访问量:72
使用 SHAP 解释神经网络
Explain a neural network using SHAP
问:
我正在尝试解释以下使用玩具数据训练的神经网络,如使用 SHAP 所示:
import keras
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.preprocessing import StandardScaler
import shap
import xgboost
#https://github.com/shap/shap
X = np.array([[(1,2,3,3,1),(3,2,1,3,2),(3,2,2,3,3),(2,2,1,1,2),(2,1,1,1,1)],
[(4,5,6,4,4),(5,6,4,3,2),(5,5,6,1,3),(3,3,3,2,2),(2,3,3,2,1)],
[(7,8,9,4,7),(7,7,6,7,8),(5,8,7,8,8),(6,7,6,7,8),(5,7,6,6,6)],
[(7,8,9,8,6),(6,6,7,8,6),(8,7,8,8,8),(8,6,7,8,7),(8,6,7,8,8)],
[(4,5,6,5,5),(5,5,5,6,4),(6,5,5,5,6),(4,4,3,3,3),(5,5,4,4,5)],
[(4,5,6,5,5),(5,5,5,6,4),(6,5,5,5,6),(4,4,3,3,3),(5,5,4,4,5)],
[(1,2,3,3,1),(3,2,1,3,2),(3,2,2,3,3),(2,2,1,1,2),(2,1,1,1,1)]])
y = np.array([0, 1, 2, 2, 1,1,0])
model = keras.Sequential([
layers.LSTM(64, return_sequences=True, input_shape=(4, 1)),
layers.Conv1D(64, kernel_size=3, activation='relu'),
layers.MaxPooling1D(pool_size=2),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(3, activation='softmax') # Adjust the number of output units based on your problem (3 for 3 classes)
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=10)
这是我的解释器代码:
explainer = shap.Explainer(model)
shap_values = explainer(X)
shap.plots.waterfall(shap_values[0])
但是如果你尝试,你会得到一个错误。有人能给我一些关于如何解释这个简单神经网络的提示吗?我愿意使用其他库。
该代码在以下玩具教程中起作用:
import xgboost
import shap
# train an XGBoost model
X, y = shap.datasets.california()
model = xgboost.XGBRegressor().fit(X, y)
print(X,y)
# explain the model's predictions using SHAP
# (same syntax works for LightGBM, CatBoost, scikit-learn, transformers, Spark, etc.)
explainer = shap.Explainer(model)
shap_values = explainer(X)
# visualize the first prediction's explanation
shap.plots.waterfall(shap_values[0])
答: 暂无答案
评论