提问人:George 提问时间:11/15/2023 更新时间:11/15/2023 访问量:13
将它们和边际效应与乘法插补数据进行匹配
Matchthem and Marginal Effects with multiply imputed data
问:
我正在研究一个包含乘法插补数据的 PSM 模型。我试图获得估计的边际效应。我可以很容易地得到合并的逻辑回归模型,但我似乎无法看到边际效应。我正在附上我的代码以获得任何帮助。我是边际效应函数的新手,但我在 Matchthem 的上下文中需要它。欢迎任何帮助,代码如下:
library(mice)
library(MatchThem)
library(cobalt)
library(survey)
library(marginaleffects)
data('osteoarthritis')
summary(osteoarthritis)
imputed.datasets<-mice(osteoarthritis,m=5)
matched.datasets<-matchthem(OSP~AGE+SEX+BMI+RAC+SMK,
datasets=imputed.datasets,
approach='within',
method='full',
distance = 'glm',
link = 'logit')
bal.tab(matched.datasets,stats=c('m','ks'), imp.fun='max', abs=TRUE)
matched.models<-with(matched.datasets,
svyglm(KOA~OSP,family=quasibinomial()),
cluster=TRUE)
matched.results<-pool(matched.models)
summary(matched.results,conf.int=TRUE)
summary(matched.results,conf.int=TRUE, exponentiate = TRUE)
comp.imp <- lapply(matched.datasets, function(fit) {
avg_comparisons(fit, newdata = subset(fit$matched.datasets, 'OSP' == 1),
variables = "OSP", wts = "weights", vcov = "HC3"
)
})
pooled.comp <- mice::pool(comp.imp)
我敢肯定,这只是我忽略了这一点。
答: 暂无答案
评论