将商店绩效与贝叶斯平均评分进行比较

Comparing store performance with bayesian average rating

提问人:hk2 提问时间:4/13/2023 更新时间:4/13/2023 访问量:24

问:

我正在尝试根据商店的评级和评论来比较商店的表现,我在类似的帖子中遇到了两种方法——加权评级和贝叶斯评级 按 5 星评级排序的更好方法是什么?

我的数据集有点相似,商店有总体评分(满分 5 星评分)和评论数。但是,有些商店的评分较高,评论较少,有些商店的评分较高,评论较高,而另一些商店的评分较低,评论较高。我很难理解加权评级方法中的“m”是什么意思,该方法以及埃文·米勒的贝叶斯公式(即enter image description here]1weighted rating = (v / (v + m)) * R + (m / (v + m)) * C


nk is the number of k-star ratings,
sk is the "worth" (in points) of k stars,
N is the total number of votes
K is the maximum number of stars (e.g. K=5, in a 5-star rating system)
z_alpha/2 is the 1 - alpha/2 quantile of a normal distribution. If you want 95% confidence (based on the Bayesian posterior distribution) that the actual sort criterion is at least as big as the computed sort criterion, choose z_alpha/2 = 1.65```

Below is a sample dataset to provide more clarity. The ratings lie between 3.5 to 4.6 with reviews ranging from ~200 to ~2800. Which of the above two methods should be a good fit in my case and how can I use the variables in my dataset in the above two formulae?

商店 评级 评论数量
101 3.7 211
102 3.6 1,194
103 3.7 1,879
104 3.7 876
105 3.7 765
106 3.7 922
107 3.5 502
108 3.7 2,401
109 3.9 635
110 3.9 505
111 3.8 275
112 3.9 1,021
113 3.9 1,931
114 4 851
115 4.1 741
116 4.1 749
117 4 500
118 4.2 896
119 4.2 2,807
120 4.2 1,372
121 4.1 1,807
122 4.2 2,526
123 4 1,170
124 4.2 1,587
125 4.2 2,125
126 4.1 1,959
127 4.3 862
128 4.3 1,249
129 4.4 2,143
130 4.4 1,396
131 4.4 366
132 4.4 954
133 4.5 1,058
134 4.5 230
135 4.6 436
136 4.6 1,000
统计贝 叶斯 评级 Google-Reviews

评论


答: 暂无答案