提问人:buzz bowlekar 提问时间:2/23/2023 最后编辑:buzz bowlekar 更新时间:2/23/2023 访问量:75
如何在 tf.keras 中不使用 sklearn 的情况下计算宏 f1 分数
How to calculate macro f1-score without using sklearn in tf.keras
问:
我必须在tf.keras中计算宏f1分数,条件是,不要使用sklearn
我试过了,但没有得到输出
首先,我尝试根据测试数据进行计算
class Metrics(tf.keras.callbacks.Callback):
def __init__(self,train_data,val_data):
self.train_data = train_data
self.validation_data = val_data
def on_train_begin(self,logs={}):
self.f1_score_test = []
#self.f1_score_train = []
def on_epoch_end(self,epoch,logs={}):
y_pred_test = (np.asarray(self.model.predict(self.validation_data[0]))).round()
y_true_test = self.validation_data[1]
def f1(y_true_test, y_pred_test):
TP = np.sum(np.multiply([i==True for i in y_pred_test], y_true_test))
TN = np.sum(np.multiply([i==False for i in y_pred_test], [not(j) for j in y_true_test]))
FP = np.sum(np.multiply([i==True for i in y_pred_test], [not(j) for j in y_true_test]))
FN = np.sum(np.multiply([i==False for i in y_pred_test], y_true_test))
precision = TP/(TP+FP)
recall = TP/(TP+FN)
if precision != 0 and recall != 0:
f1 = (2 * precision * recall) / (precision + recall)
else:
f1 = 0
return f1
def f1_macro(y_true_test, y_pred_test):
macro = []
for i in np.unique(y_true_test):
modified_true = [i==j for j in y_true_test]
modified_pred = [i==j for j in y_pred_test]
F1_score_test = f1(modified_true, modified_pred)
self.f1_score_test.append(F1_score_test)
#self.f1_score_train.append(F1_score_train)
print('f1_test = {}:'.format(F1_score_test))
new_metrics = Metrics((x_train,y_train),(x_test,y_test))
答: 暂无答案
评论