提问人:Mahim 提问时间:8/16/2023 更新时间:9/28/2023 访问量:24
如何从riskRegression::FGR()子分布竞争风险模型对象中获取预测和观察到的风险估计?
How to get predicted and observed risk estimates from riskRegression::FGR() subdistribution competing risk model object?
问:
我想从事件 riskRegression::FGR() 竞争风险模型对象中提取观察到的和预测的估计值。
以下是一些模拟数据:
library(simstudy)
library(data.table)
library(survival)
library(riskRegression)
library(cmprsk)
library(prodlim)
#Generate time to event data
d1 <- defData(varname = "x1", formula = .5, dist = "binary")
d1 <- defData(d1, "x2", .5, dist = "binary")
head(dtSurv)
f <- "(time==censor)*0 + (time==event_1)*1 + (time==event_2)*2 + (time==event_3)*3"
cdef <- defDataAdd(varname = "time",
formula = "pmin(censor, event_1, event_2, event_3)", dist = "nonrandom")
cdef <- defDataAdd(varname = "time",
formula = "pmin(censor, event_1, event_2, event_3)", dist = "nonrandom")
cdef <- defDataAdd(cdef, varname = "event",
formula = f,
dist = "nonrandom")
dtSurv_final <- addCompRisk(dtSurv,
events = c("event_1", "event_2", "event_3", "censor"),
timeName = "time", censorName = "censor")
head(dtSurv_final)
#Fit subdistribution model
crr<-riskRegression::FGR(Hist(time, event)~ x1+x2 ,data=dtSurv_final, cause=1)
crr.object<-riskRegression::Score(list(model1=crr),
Hist(time,event)~1,data=dtSurv_final, cause=1, times=30, plots="cal")
#Store model output
(cal<-crr.object[["Calibration"]]$plotframe %>% as.data.frame())
我尝试从中提取观察到和预测的风险,但无法这样做。cal
答:
0赞
Denzo
9/28/2023
#1
对于“观察到的”累积入射率,您可以简单地使用包的功能。cuminc
cmprsk
现在这取决于你所说的“预测累积发生率”是什么意思。如果您只是在给定一组协变量和 FGR 模型的情况下寻找 t 处特定原因的故障概率,则可以直接使用该包的出色功能。predictRisk
riskRegression
如果要绘制特定原因的故障概率的边际估计值,则可以改用包的函数。adjustedcif
adjustedCurves
评论