在宏中捕获单态泛型

Capture monomorphized generics in a macro

提问人:Richard Neumann 提问时间:11/10/2023 最后编辑:Richard Neumann 更新时间:11/10/2023 访问量:61

问:

我编写了一个特征来将对象序列化为小字节序字节的迭代器:

pub trait ToLeBytes: Sized
where
    Self::Iter: Iterator<Item = u8>,
{
    type Iter;

    fn to_le_bytes(&self) -> Self::Iter;
}

我已经为我需要的原始数据类型实现了它,也为:heapless::Vec

#[allow(clippy::cast_possible_truncation)]
#[cfg(feature = "heapless")]
impl<I, const SIZE: usize> ToLeBytes for heapless::Vec<I, SIZE>
where
    I: ToLeBytes,
    for<'a> <I as ToLeBytes>::Iter: Iterator<Item = u8> + 'a,
{
    type Iter = Box<dyn Iterator<Item = u8>>;

    fn to_le_bytes(&self) -> Self::Iter {
        let mut iterator: Box<dyn Iterator<Item = u8>> = Box::new(empty());

        if u8::try_from(SIZE).is_ok() {
            iterator = Box::new(<u8 as ToLeBytes>::to_le_bytes(&(self.len() as u8)));
        } else if u16::try_from(SIZE).is_ok() {
            iterator = Box::new(<u16 as ToLeBytes>::to_le_bytes(&(self.len() as u16)));
        } else if u32::try_from(SIZE).is_ok() {
            iterator = Box::new(<u32 as ToLeBytes>::to_le_bytes(&(self.len() as u32)));
        } else if u64::try_from(SIZE).is_ok() {
            iterator = Box::new(<u64 as ToLeBytes>::to_le_bytes(&(self.len() as u64)));
        }

        for item in self {
            iterator = Box::new(iterator.chain(<I as ToLeBytes>::to_le_bytes(item)));
        }

        iterator
    }
}

但是,由于此代码旨在运行在硬件性能低下的嵌入式系统上,因此我想避免堆分配,因此希望摆脱 es。Box

当然,在基本的 rust 中链接迭代器是不可能的,因为每次调用都会返回一种新型迭代器。 因此,我认为也许宏可以做到这一点,因为我已经为该特征的派生宏做了类似的事情。.chain()

但是,我当然不想为任何可能的 和 实现正文,而只为那些在相应程序中使用的正文实现。 因此,我需要在单态代码上运行宏。ISIZE

我试图在谷歌上搜索如何做到这一点,但没有找到任何结果。 如何编写在块的单态代码中传递的宏? 我想要的不是完整的解决方案,而是朝着正确的方向前进。impl

更新

我想我快到了,多亏了 Chayim 的评论:

use crate::ToLeBytes;
use std::array::IntoIter;
use std::iter::FlatMap;
use std::slice::Iter;

pub struct ContainerIterator<'a, T, const HEADER_SIZE: usize>
where
    T: ToLeBytes,
{
    size_iterator: IntoIter<u8, HEADER_SIZE>,
    items_iterator: FlatMap<Iter<'a, T>, <T as ToLeBytes>::Iter, fn(&T) -> <T as ToLeBytes>::Iter>,
}

impl<'a, T, const HEADER_SIZE: usize> ContainerIterator<'a, T, HEADER_SIZE>
where
    T: ToLeBytes,
{
    fn from_size_iterator_and_slice(size_iterator: IntoIter<u8, HEADER_SIZE>, items: &[T]) -> Self
    where
        T: ToLeBytes,
    {
        Self {
            size_iterator,
            items_iterator: items
                .iter()
                .flat_map(|item| <T as ToLeBytes>::to_le_bytes(item)),
        }
    }
}

impl<'a, T, const HEADER_SIZE: usize> Iterator for ContainerIterator<'a, T, HEADER_SIZE>
where
    T: ToLeBytes,
{
    type Item = u8;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(next_header) = self.size_iterator.next() {
            Some(next_header)
        } else {
            self.items_iterator.next()
        }
    }
}

pub enum SizedContainerIterator<'a, T>
where
    T: ToLeBytes,
{
    U8(ContainerIterator<'a, T, 1>),
    U16(ContainerIterator<'a, T, 2>),
    U32(ContainerIterator<'a, T, 4>),
    U64(ContainerIterator<'a, T, 8>),
}

impl<'a, T> SizedContainerIterator<'a, T>
where
    T: ToLeBytes,
{
    pub fn new(items: &[T], capacity: usize) -> SizedContainerIterator<'a, T>
    where
        T: ToLeBytes,
    {
        if u8::try_from(capacity).is_ok() {
            SizedContainerIterator::U8(ContainerIterator::from_size_iterator_and_slice(
                <u8 as ToLeBytes>::to_le_bytes(&(items.len() as u8)),
                items,
            ))
        } else if u16::try_from(capacity).is_ok() {
            SizedContainerIterator::U16(ContainerIterator::from_size_iterator_and_slice(
                <u16 as ToLeBytes>::to_le_bytes(&(items.len() as u16)),
                items,
            ))
        } else if u32::try_from(capacity).is_ok() {
            SizedContainerIterator::U32(ContainerIterator::from_size_iterator_and_slice(
                <u32 as ToLeBytes>::to_le_bytes(&(items.len() as u32)),
                items,
            ))
        } else if u64::try_from(capacity).is_ok() {
            SizedContainerIterator::U64(ContainerIterator::from_size_iterator_and_slice(
                <u64 as ToLeBytes>::to_le_bytes(&(items.len() as u64)),
                items,
            ))
        } else {
            unreachable!("vec size exceeds u64");
        }
    }
}

impl<'a, T> Iterator for SizedContainerIterator<'a, T>
where
    T: ToLeBytes,
{
    type Item = u8;

    fn next(&mut self) -> Option<Self::Item> {
        match self {
            Self::U8(iterator) => iterator.next(),
            Self::U16(iterator) => iterator.next(),
            Self::U32(iterator) => iterator.next(),
            Self::U64(iterator) => iterator.next(),
        }
    }
}

但是,现在我遇到了指定类型生存期的问题:Iter

#[allow(clippy::cast_possible_truncation)]
#[cfg(feature = "heapless")]
impl<I, const SIZE: usize> ToLeBytes for heapless::Vec<I, SIZE>
where
    I: ToLeBytes,
    for<'a> <I as ToLeBytes>::Iter: Iterator<Item = u8> + 'a,
{
    type Iter = SizedContainerIterator<'_, I>;

    fn to_le_bytes(&self) -> Self::Iter {
        SizedContainerIterator::new(self, SIZE)
    }
}
Rust 宏单

评论

2赞 Chayim Friedman 11/10/2023
您可以创建自定义迭代器类型并避免 .chain()
1赞 Chayim Friedman 11/10/2023
或者直接使用 .flat_map()
0赞 Richard Neumann 11/10/2023
flat_map()适用于 .但是,我需要预置大小,其类型仅在单调期间确定(参见 if/else)。但我会尝试自定义迭代器方法。heapless::Vec
0赞 Chayim Friedman 11/10/2023
为此,您可以与枚举一起使用。或者像我建议的那样,手动迭代器。chain()
1赞 Chayim Friedman 11/10/2023
您需要将关联的类型设为 的 GAT 的生存期。或者,或者,获取并实现 的性状。但是,如果您使用枚举,则不需要自定义迭代器就足够了。&selfself&'a heapless::Vecflat_map()chain()

答:

0赞 Richard Neumann 11/10/2023 #1

多亏了 Chayim 的提示,我才让它工作起来:

#![cfg(feature = "heapless")]
use crate::ToLeBytes;
use std::array::IntoIter;

#[derive(Debug)]
pub enum SizePrefixIterator {
    U8(IntoIter<u8, 1>),
    U16(IntoIter<u8, 2>),
    U32(IntoIter<u8, 4>),
    U64(IntoIter<u8, 8>),
}

impl SizePrefixIterator {
    #[allow(clippy::cast_possible_truncation)]
    pub fn new(len: usize, capacity: usize) -> Self {
        if u8::try_from(capacity).is_ok() {
            Self::U8(<u8 as ToLeBytes>::to_le_bytes(len as u8))
        } else if u16::try_from(capacity).is_ok() {
            Self::U16(<u16 as ToLeBytes>::to_le_bytes(len as u16))
        } else if u32::try_from(capacity).is_ok() {
            Self::U32(<u32 as ToLeBytes>::to_le_bytes(len as u32))
        } else if u64::try_from(capacity).is_ok() {
            Self::U64(<u64 as ToLeBytes>::to_le_bytes(len as u64))
        } else {
            unreachable!("container size exceeds u64");
        }
    }
}

impl Iterator for SizePrefixIterator {
    type Item = u8;

    fn next(&mut self) -> Option<Self::Item> {
        match self {
            Self::U8(header) => header.next(),
            Self::U16(header) => header.next(),
            Self::U32(header) => header.next(),
            Self::U64(header) => header.next(),
        }
    }
}
#[cfg(feature = "heapless")]
impl<T, const SIZE: usize> ToLeBytes for heapless::Vec<T, SIZE>
where
    T: Sized + ToLeBytes,
{
    type Iter = std::iter::Chain<
        size_prefix_iterator::SizePrefixIterator,
        FlatMap<
            <Self as IntoIterator>::IntoIter,
            <T as ToLeBytes>::Iter,
            fn(T) -> <T as ToLeBytes>::Iter,
        >,
    >;

    fn to_le_bytes(self) -> Self::Iter {
        size_prefix_iterator::SizePrefixIterator::new(self.len(), SIZE).chain(
            self.into_iter()
                .flat_map(<T as ToLeBytes>::to_le_bytes as fn(T) -> <T as ToLeBytes>::Iter),
        )
    }
}