将列折叠/连接/聚合到每个组中的单个逗号分隔的字符串

Collapse / concatenate / aggregate a column to a single comma separated string within each group

提问人:linp 提问时间:4/11/2013 最后编辑:Jaaplinp 更新时间:7/15/2023 访问量:55774

问:

我想根据两个分组变量聚合数据框中的一列,并用逗号分隔各个值。

以下是一些数据:

data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))
data
#     A B  C
# 1 111 1  5
# 2 111 2  6
# 3 111 1  7
# 4 222 2  8
# 5 222 1  9
# 6 222 2 10    

“A”和“B”是分组变量,“C”是我想折叠成逗号分隔字符串的变量。我试过:character

library(plyr)
ddply(data, .(A,B), summarise, test = list(C))

    A B  test
1 111 1  5, 7
2 111 2     6
3 222 1     9
4 222 2 8, 10

但是当我尝试将测试列转换为它时,它变得像这样:character

ddply(data, .(A,B), summarise, test = as.character(list(C)))
#     A B     test
# 1 111 1  c(5, 7)
# 2 111 2        6
# 3 222 1        9
# 4 222 2 c(8, 10)

如何保持格式并用逗号分隔它们?例如,第 1 行应该只有 ,而不是 c(5,7)。character"5,7"

聚合 R-FAQ

评论


答:

15赞 A5C1D2H2I1M1N2O1R2T1 4/11/2013 #1

更改放置位置 :as.character

> out <- ddply(data, .(A, B), summarise, test = list(as.character(C)))
> str(out)
'data.frame':   4 obs. of  3 variables:
 $ A   : num  111 111 222 222
 $ B   : int  1 2 1 2
 $ test:List of 4
  ..$ : chr  "5" "7"
  ..$ : chr "6"
  ..$ : chr "9"
  ..$ : chr  "8" "10"
> out
    A B  test
1 111 1  5, 7
2 111 2     6
3 222 1     9
4 222 2 8, 10

请注意,在这种情况下,每个项目实际上仍然是一个单独的字符,而不是单个字符串。也就是说,这不是一个看起来像“5, 7”的实际字符串,而是两个字符“5”和“7”,R 在它们之间用逗号显示。

与以下内容进行比较:

> out2 <- ddply(data, .(A, B), summarise, test = paste(C, collapse = ", "))
> str(out2)
'data.frame':   4 obs. of  3 variables:
 $ A   : num  111 111 222 222
 $ B   : int  1 2 1 2
 $ test: chr  "5, 7" "6" "9" "8, 10"
> out
    A B  test
1 111 1  5, 7
2 111 2     6
3 222 1     9
4 222 2 8, 10

当然,base R 中的类似解决方案是:aggregate

> A1 <- aggregate(C ~ A + B, data, function(x) c(as.character(x)))
> str(A1)
'data.frame':   4 obs. of  3 variables:
 $ A: num  111 222 111 222
 $ B: int  1 1 2 2
 $ C:List of 4
  ..$ 0: chr  "5" "7"
  ..$ 1: chr "9"
  ..$ 2: chr "6"
  ..$ 3: chr  "8" "10"
> A2 <- aggregate(C ~ A + B, data, paste, collapse = ", ")
> str(A2)
'data.frame':   4 obs. of  3 variables:
 $ A: num  111 222 111 222
 $ B: int  1 1 2 2
 $ C: chr  "5, 7" "9" "6" "8, 10"
118赞 G. Grothendieck 4/11/2013 #2

以下是一些使用 的选项,该函数使用逗号和空格连接字符串向量以分隔组件。如果不需要逗号,可以改用参数。toStringpaste()collapse

数据表

# alternative using data.table
library(data.table)
as.data.table(data)[, toString(C), by = list(A, B)]

骨料这不使用任何包:

# alternative using aggregate from the stats package in the core of R
aggregate(C ~., data, toString)

sqldf的

这是使用 sqldf 包的 SQL 函数的替代方案:group_concat

library(sqldf)
sqldf("select A, B, group_concat(C) C from data group by A, B", method = "raw")

德普莱尔另一种选择:dplyr

library(dplyr)
data %>%
  group_by(A, B) %>%
  summarise(test = toString(C)) %>%
  ungroup()

或使用更新版本的 DPLYR

data %>%  summarise(test = toString(C), .by = c(A, B))

普莱尔

# plyr
library(plyr)
ddply(data, .(A,B), summarize, C = toString(C))

评论

3赞 ddunn801 8/18/2020
仅保留唯一值:as.data.table(data)[, toString(unique(C)), by = list(A, B)]
38赞 Ben G 4/11/2019 #3

这是/解决方案:stringrtidyverse

library(tidyverse)
library(stringr)

data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))


data %>%
 group_by(A, B) %>%
 summarize(text = str_c(C, collapse = ", "))

# A tibble: 4 x 3
# Groups:   A [2]
      A     B text 
  <dbl> <int> <chr>
1   111     1 5, 7 
2   111     2 6    
3   222     1 9    
4   222     2 8, 10

评论

4赞 Rich Pauloo 6/1/2019
也可以用 R 来代替。stringr::str_cpaste
4赞 Andrii 4/15/2020 #4

这里有一个小的改进,以避免重复

# 1. Original data set
data <- data.frame(
  A = c(rep(111, 3), rep(222, 3)), 
  B = rep(1:2, 3), 
  C = c(5:10))

# 2. Add duplicate row
data <- rbind(data, data.table(
  A = 111, B = 1, C = 5
))

# 3. Solution with duplicates
data %>%
  group_by(A, B) %>%
  summarise(test = toString(C)) %>%
  ungroup()

#      A     B test   
#   <dbl> <dbl> <chr>  
# 1   111     1 5, 7, 5
# 2   111     2 6      
# 3   222     1 9      
# 4   222     2 8, 10

# 4. Solution without duplicates
data %>%
  select(A, B, C) %>% unique() %>% 
  group_by(A, B) %>%
  summarise(test = toString(C)) %>%
  ungroup()

#    A     B test 
#   <dbl> <dbl> <chr>
# 1   111     1 5, 7 
# 2   111     2 6    
# 3   222     1 9    
# 4   222     2 8, 10

希望它能有用。

2赞 akrun 9/22/2021 #5

使用 fromcollapcollapse

library(collapse)
collap(data, ~ A + B, toString)
    A B     C
1 111 1  5, 7
2 111 2     6
3 222 1     9
4 222 2 8, 10

数据

data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))
2赞 Maël 1/31/2023 #6

使用 .by 进行内联分组的更新解决方案:dplyr 1.1.0

data %>% 
  summarise(test = toString(C), .by = c(A, B))

    A B  test
1 111 1  5, 7
2 111 2     6
3 222 2 8, 10
4 222 1     9

基准:

benchmark <-
  bench::mark(
  data.table = as.data.table(data)[, toString(C), by = list(A, B)],
  aggregate = aggregate(C ~., data, toString),
  sqldf = sqldf("select A, B, group_concat(C) C from data group by A, B", method = "raw"),
  dplyr1.0.0 = data %>%
    group_by(A, B) %>%
    summarise(test = toString(C)) %>%
    ungroup(),
  dplyr1.1.0 = summarise(data, test = toString(C), .by = c(A, B)),
  collapse = collap(data, ~ A + B, toString),
  min_iterations = 30,
  check = FALSE
)

plot(benchmark)

enter image description here