提问人:linp 提问时间:4/11/2013 最后编辑:Jaaplinp 更新时间:7/15/2023 访问量:55774
将列折叠/连接/聚合到每个组中的单个逗号分隔的字符串
Collapse / concatenate / aggregate a column to a single comma separated string within each group
问:
我想根据两个分组变量聚合数据框中的一列,并用逗号分隔各个值。
以下是一些数据:
data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))
data
# A B C
# 1 111 1 5
# 2 111 2 6
# 3 111 1 7
# 4 222 2 8
# 5 222 1 9
# 6 222 2 10
“A”和“B”是分组变量,“C”是我想折叠成逗号分隔字符串的变量。我试过:character
library(plyr)
ddply(data, .(A,B), summarise, test = list(C))
A B test
1 111 1 5, 7
2 111 2 6
3 222 1 9
4 222 2 8, 10
但是当我尝试将测试列转换为它时,它变得像这样:character
ddply(data, .(A,B), summarise, test = as.character(list(C)))
# A B test
# 1 111 1 c(5, 7)
# 2 111 2 6
# 3 222 1 9
# 4 222 2 c(8, 10)
如何保持格式并用逗号分隔它们?例如,第 1 行应该只有 ,而不是 c(5,7)。character
"5,7"
答:
15赞
A5C1D2H2I1M1N2O1R2T1
4/11/2013
#1
更改放置位置 :as.character
> out <- ddply(data, .(A, B), summarise, test = list(as.character(C)))
> str(out)
'data.frame': 4 obs. of 3 variables:
$ A : num 111 111 222 222
$ B : int 1 2 1 2
$ test:List of 4
..$ : chr "5" "7"
..$ : chr "6"
..$ : chr "9"
..$ : chr "8" "10"
> out
A B test
1 111 1 5, 7
2 111 2 6
3 222 1 9
4 222 2 8, 10
请注意,在这种情况下,每个项目实际上仍然是一个单独的字符,而不是单个字符串。也就是说,这不是一个看起来像“5, 7”的实际字符串,而是两个字符“5”和“7”,R 在它们之间用逗号显示。
与以下内容进行比较:
> out2 <- ddply(data, .(A, B), summarise, test = paste(C, collapse = ", "))
> str(out2)
'data.frame': 4 obs. of 3 variables:
$ A : num 111 111 222 222
$ B : int 1 2 1 2
$ test: chr "5, 7" "6" "9" "8, 10"
> out
A B test
1 111 1 5, 7
2 111 2 6
3 222 1 9
4 222 2 8, 10
当然,base R 中的类似解决方案是:aggregate
> A1 <- aggregate(C ~ A + B, data, function(x) c(as.character(x)))
> str(A1)
'data.frame': 4 obs. of 3 variables:
$ A: num 111 222 111 222
$ B: int 1 1 2 2
$ C:List of 4
..$ 0: chr "5" "7"
..$ 1: chr "9"
..$ 2: chr "6"
..$ 3: chr "8" "10"
> A2 <- aggregate(C ~ A + B, data, paste, collapse = ", ")
> str(A2)
'data.frame': 4 obs. of 3 variables:
$ A: num 111 222 111 222
$ B: int 1 1 2 2
$ C: chr "5, 7" "9" "6" "8, 10"
118赞
G. Grothendieck
4/11/2013
#2
以下是一些使用 的选项,该函数使用逗号和空格连接字符串向量以分隔组件。如果不需要逗号,可以改用参数。toString
paste()
collapse
数据表
# alternative using data.table
library(data.table)
as.data.table(data)[, toString(C), by = list(A, B)]
骨料这不使用任何包:
# alternative using aggregate from the stats package in the core of R
aggregate(C ~., data, toString)
sqldf的
这是使用 sqldf 包的 SQL 函数的替代方案:group_concat
library(sqldf)
sqldf("select A, B, group_concat(C) C from data group by A, B", method = "raw")
德普莱尔另一种选择:dplyr
library(dplyr)
data %>%
group_by(A, B) %>%
summarise(test = toString(C)) %>%
ungroup()
或使用更新版本的 DPLYR
data %>% summarise(test = toString(C), .by = c(A, B))
普莱尔
# plyr
library(plyr)
ddply(data, .(A,B), summarize, C = toString(C))
评论
3赞
ddunn801
8/18/2020
仅保留唯一值:as.data.table(data)[, toString(unique(C)), by = list(A, B)]
38赞
Ben G
4/11/2019
#3
这是/解决方案:stringr
tidyverse
library(tidyverse)
library(stringr)
data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))
data %>%
group_by(A, B) %>%
summarize(text = str_c(C, collapse = ", "))
# A tibble: 4 x 3
# Groups: A [2]
A B text
<dbl> <int> <chr>
1 111 1 5, 7
2 111 2 6
3 222 1 9
4 222 2 8, 10
评论
4赞
Rich Pauloo
6/1/2019
也可以用 R 来代替。stringr::str_c
paste
4赞
Andrii
4/15/2020
#4
这里有一个小的改进,以避免重复
# 1. Original data set
data <- data.frame(
A = c(rep(111, 3), rep(222, 3)),
B = rep(1:2, 3),
C = c(5:10))
# 2. Add duplicate row
data <- rbind(data, data.table(
A = 111, B = 1, C = 5
))
# 3. Solution with duplicates
data %>%
group_by(A, B) %>%
summarise(test = toString(C)) %>%
ungroup()
# A B test
# <dbl> <dbl> <chr>
# 1 111 1 5, 7, 5
# 2 111 2 6
# 3 222 1 9
# 4 222 2 8, 10
# 4. Solution without duplicates
data %>%
select(A, B, C) %>% unique() %>%
group_by(A, B) %>%
summarise(test = toString(C)) %>%
ungroup()
# A B test
# <dbl> <dbl> <chr>
# 1 111 1 5, 7
# 2 111 2 6
# 3 222 1 9
# 4 222 2 8, 10
希望它能有用。
2赞
akrun
9/22/2021
#5
使用 fromcollap
collapse
library(collapse)
collap(data, ~ A + B, toString)
A B C
1 111 1 5, 7
2 111 2 6
3 222 1 9
4 222 2 8, 10
数据
data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))
2赞
Maël
1/31/2023
#6
使用 .by
进行内联分组的更新解决方案:dplyr 1.1.0
data %>%
summarise(test = toString(C), .by = c(A, B))
A B test
1 111 1 5, 7
2 111 2 6
3 222 2 8, 10
4 222 1 9
基准:
benchmark <-
bench::mark(
data.table = as.data.table(data)[, toString(C), by = list(A, B)],
aggregate = aggregate(C ~., data, toString),
sqldf = sqldf("select A, B, group_concat(C) C from data group by A, B", method = "raw"),
dplyr1.0.0 = data %>%
group_by(A, B) %>%
summarise(test = toString(C)) %>%
ungroup(),
dplyr1.1.0 = summarise(data, test = toString(C), .by = c(A, B)),
collapse = collap(data, ~ A + B, toString),
min_iterations = 30,
check = FALSE
)
plot(benchmark)
评论