使用 dplyr 通过多个函数传递列名

Passing column names through multiple functions with dplyr

提问人:Marius 提问时间:11/24/2017 更新时间:7/5/2019 访问量:318

问:

我编写了一个简单的函数来创建百分比表:dplyr

library(dplyr)

df = tibble(
    Gender = sample(c("Male", "Female"), 100, replace = TRUE),
    FavColour = sample(c("Red", "Blue"), 100, replace = TRUE)
)

quick_pct_tab = function(df, col) {
    col_quo = enquo(col)
    df %>%
        count(!! col_quo) %>%
        mutate(Percent = (100 * n / sum(n)))
}

df %>% quick_pct_tab(FavColour)
# Output:
# A tibble: 2 x 3
  FavColour     n Percent
      <chr> <int>   <dbl>
1      Blue    58      58
2       Red    42      42

这很好用。但是,当我尝试在此基础上构建,编写一个新函数来计算使用分组计算相同百分比时,我无法弄清楚如何在新函数中使用 - 在尝试了 和 等的多个不同组合之后。quick_pct_tabquo(col)!! quo(col)enquo(col)

bygender_tab = function(df, col) {
    col_enquo = enquo(col)
    # Want to replace this with 
    #   df %>% quick_pct_tab(col)
    gender_tab = df %>%
        group_by(Gender) %>%
        count(!! col_enquo) %>%
        mutate(Percent = (100 * n / sum(n)))

    gender_tab %>%
        select(!! col_enquo, Gender, Percent) %>%
        spread(Gender, Percent)
}
> df %>% bygender_tab(FavColour)
# A tibble: 2 x 3
  FavColour   Female     Male
*     <chr>    <dbl>    <dbl>
1      Blue 52.08333 63.46154
2       Red 47.91667 36.53846

据我了解,非标准评估已被弃用,因此学习如何使用 .我必须如何引用参数才能将其传递给进一步的函数?dplyrdplyr > 0.7coldplyr

r dplyr tidyverse

评论

0赞 amrrs 11/24/2017
df %>% group_by(Gender) %>% quick_pct_tab(get(col)) 函数内部似乎正在工作,但不确定这是否提供了所需的输出

答:

2赞 akrun 11/24/2017 #1

我们需要做一些事情来触发对“col_enquo”的评估!!

bygender_tab = function(df, col) {
   col_enquo = enquo(col)

   df %>% 
      group_by(Gender) %>%
      quick_pct_tab(!!col_enquo)  %>%  ## change
      select(!! col_enquo, Gender, Percent) %>%
      spread(Gender, Percent)   
}

df %>% 
    bygender_tab(FavColour)
# A tibble: 2 x 3
#   FavColour   Female     Male
#*     <chr>    <dbl>    <dbl>
#1      Blue 54.54545 41.07143
#2       Red 45.45455 58.92857

使用 OP 的函数,输出为

# A tibble: 2 x 3
#  FavColour   Female     Male
#*     <chr>    <dbl>    <dbl>
#1      Blue 54.54545 41.07143
#2       Red 45.45455 58.92857

请注意,创建数据集时未设置种子

更新

使用 version (ran with - ),我们还可以使用 to do quote、unquote、substitutionrlang0.4.0dplyr0.8.2{{...}}

bygender_tabN = function(df, col) {
  

    df %>% 
       group_by(Gender) %>%
       quick_pct_tab({{col}})  %>%  ## change
       select({{col}}, Gender, Percent) %>%
       spread(Gender, Percent)   
 }
 
df %>% 
     bygender_tabN(FavColour)
# A tibble: 2 x 3
#  FavColour Female  Male
#  <chr>      <dbl> <dbl>
#1 Blue          50  46.3
#2 Red           50  53.7
     

- 使用以前的函数检查输出(未提供set.seed)

df %>% 
     bygender_tab(FavColour)
# A tibble: 2 x 3
#  FavColour Female  Male
#  <chr>      <dbl> <dbl>
#1 Blue          50  46.3
#2 Red           50  53.7