提问人:Nick Reynolds 提问时间:10/17/2023 最后编辑:Trenton McKinneyNick Reynolds 更新时间:11/2/2023 访问量:41
如何使用 NCO 使我从 NetCDF 提取的数据格式正确?
How do I get the data I extract from NetCDF using NCO to be in correct format?
问:
我正在处理 NetCDF 文件,并希望使用 NCO 提取数据。这是南佛罗里达州 PM 2.5 的时间序列数据。因此,在 1 月 1 日至 3 月 30 日期间,南佛罗里达网格地图上有数千个点的 PM 2.5 数据。我正在使用以下命令:
ncdump -t hysplit_pm25_sugar_10m_2014a.nc
此命令确实提取数据,但以奇怪的格式提供数据。下面的 PM 2.5 水平是一个位置的示例。在我的输出中,上面列出了其余的 pm 2.5 值,纬度、经度和时间位于底部。
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.75578e-05, 0, 0, 0, 8.411169e-06, 0,
0, 3.043653e-05, 1.846332e-06, 0.0001020871, 0.0001990109, 0.0005862598,
0.0006739099, 0.0007504884, 0.001151713, 0.001129386, 0.001347817,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.50882e-06,
1.027017e-06, 0, 0.0001941336, 0.0001520694, 0.0004375369, 0.0005555756,
0.0004916056, 0.0009697205, 0.001099954 ;
latitude = 24.15, 24.2, 24.25, 24.3, 24.35, 24.4, 24.45, 24.5, 24.55, 24.6,
24.65, 24.7, 24.75, 24.8, 24.85, 24.9, 24.95, 25, 25.05, 25.1, 25.15,
25.2, 25.25, 25.3, 25.35, 25.4, 25.45, 25.5, 25.55, 25.6, 25.65, 25.7,
25.75, 25.8, 25.85, 25.9, 25.95, 26, 26.05, 26.1, 26.15, 26.2, 26.25,
26.3, 26.35, 26.4, 26.45, 26.5, 26.55, 26.6, 26.65, 26.7, 26.75, 26.8,
26.85, 26.9, 26.95, 27, 27.05, 27.1, 27.15, 27.2, 27.25, 27.3, 27.35,
27.4, 27.45, 27.5, 27.55, 27.6, 27.65, 27.7, 27.75, 27.8, 27.85, 27.9,
27.95, 28, 28.05, 28.1, 28.15, 28.2, 28.25, 28.3, 28.35, 28.4, 28.45,
28.5, 28.55, 28.6, 28.65, 28.7, 28.75, 28.8, 28.85, 28.9, 28.95, 29,
29.05, 29.1, 29.15 ;
levels = 10 ;
longitude = -83.15, -83.1, -83.05, -83, -82.95, -82.9, -82.85, -82.8,
-82.75, -82.7, -82.65, -82.6, -82.55, -82.5, -82.45, -82.4, -82.35,
-82.3, -82.25, -82.2, -82.15, -82.1, -82.05, -82, -81.95, -81.9, -81.85,
-81.8, -81.75, -81.7, -81.65, -81.6, -81.55, -81.5, -81.45, -81.4,
-81.35, -81.3, -81.25, -81.2, -81.15, -81.1, -81.05, -81, -80.95, -80.9,
-80.85, -80.8, -80.75, -80.7, -80.65, -80.6, -80.55, -80.5, -80.45,
-80.4, -80.35, -80.3, -80.25, -80.2, -80.15, -80.1, -80.05, -80, -79.95,
-79.9, -79.85, -79.8, -79.75, -79.7, -79.65, -79.6, -79.55, -79.5,
-79.45, -79.4, -79.35, -79.3, -79.25, -79.2, -79.15, -79.1, -79.05, -79,
-78.95, -78.9, -78.85, -78.8, -78.75, -78.7, -78.65, -78.6, -78.55,
-78.5, -78.45, -78.4, -78.35, -78.3, -78.25, -78.2, -78.15 ;
time = "2014-01-01 16:30", "2014-01-02 16:30", "2014-01-03 16:30",
"2014-01-04 16:30", "2014-01-05 16:30", "2014-01-06 16:30",
"2014-01-07 16:30", "2014-01-08 16:30", "2014-01-09 16:30",
"2014-01-10 16:30", "2014-01-11 16:30", "2014-01-12 16:30",
"2014-01-13 16:30", "2014-01-14 16:30", "2014-01-15 16:30",
"2014-01-16 16:30", "2014-01-17 16:30", "2014-01-18 16:30",
"2014-01-19 16:30", "2014-01-20 16:30", "2014-01-21 16:30",
"2014-01-22 16:30", "2014-01-23 16:30", "2014-01-24 16:30",
"2014-01-25 16:30", "2014-01-26 16:30", "2014-01-27 16:30",
"2014-01-28 16:30", "2014-01-29 16:30", "2014-01-30 16:30",
"2014-01-31 16:30", "2014-02-01 16:30", "2014-02-02 16:30",
"2014-02-03 16:30", "2014-02-04 16:30", "2014-02-05 16:30",
"2014-02-06 16:30", "2014-02-07 16:30", "2014-02-08 16:30",
"2014-02-09 16:30", "2014-02-10 16:30", "2014-02-11 16:30",
"2014-02-12 16:30", "2014-02-13 16:30", "2014-02-14 16:30",
"2014-02-15 16:30", "2014-02-16 16:30", "2014-02-17 16:30",
"2014-02-18 16:30", "2014-02-19 16:30", "2014-02-20 16:30",
"2014-02-21 16:30", "2014-02-22 16:30", "2014-02-23 16:30",
"2014-02-24 16:30", "2014-02-25 16:30", "2014-02-26 16:30",
"2014-02-27 16:30", "2014-02-28 16:30", "2014-03-01 16:30",
"2014-03-02 16:30", "2014-03-03 16:30", "2014-03-04 16:30",
"2014-03-05 16:30", "2014-03-06 16:30", "2014-03-07 16:30",
"2014-03-08 16:30", "2014-03-09 16:30", "2014-03-10 16:30",
"2014-03-11 16:30", "2014-03-12 16:30", "2014-03-13 16:30",
"2014-03-14 16:30", "2014-03-15 16:30", "2014-03-16 16:30",
"2014-03-17 16:30", "2014-03-18 16:30", "2014-03-19 16:30",
"2014-03-20 16:30", "2014-03-21 16:30", "2014-03-22 16:30",
"2014-03-23 16:30", "2014-03-24 16:30", "2014-03-25 16:30",
"2014-03-26 16:30", "2014-03-27 16:30", "2014-03-28 16:30",
"2014-03-29 16:30", "2014-03-30 14:29:58.593750" ;
time_bnds =
"2014-01-01 15:30", "2014-01-01 16:30",
"2014-01-02 15:30", "2014-01-02 16:30",
"2014-01-03 15:30", "2014-01-03 16:30",
"2014-01-04 15:30", "2014-01-04 16:30",
"2014-01-05 15:30", "2014-01-05 16:30",
"2014-01-06 15:30", "2014-01-06 16:30",
"2014-01-07 15:30", "2014-01-07 16:30",
"2014-01-08 15:30", "2014-01-08 16:30",
"2014-01-09 15:30", "2014-01-09 16:30",
"2014-01-10 15:30", "2014-01-10 16:30",
"2014-01-11 15:30", "2014-01-11 16:30",
"2014-01-12 15:30", "2014-01-12 16:30",
"2014-01-13 15:30", "2014-01-13 16:30",
"2014-01-14 15:30", "2014-01-14 16:30",
"2014-01-15 15:30", "2014-01-15 16:30",
"2014-01-16 15:30", "2014-01-16 16:30",
"2014-01-17 15:30", "2014-01-17 16:30",
"2014-01-18 15:30", "2014-01-18 16:30",
"2014-01-19 15:30", "2014-01-19 16:30",
"2014-01-20 15:30", "2014-01-20 16:30",
"2014-01-21 15:30", "2014-01-21 16:30",
"2014-01-22 15:30", "2014-01-22 16:30",
"2014-01-23 15:30", "2014-01-23 16:30",
"2014-01-24 15:30", "2014-01-24 16:30",
"2014-01-25 15:30", "2014-01-25 16:30",
"2014-01-26 15:30", "2014-01-26 16:30",
"2014-01-27 15:30", "2014-01-27 16:30",
"2014-01-28 15:30", "2014-01-28 16:30",
"2014-01-29 15:30", "2014-01-29 16:30",
"2014-01-30 15:30", "2014-01-30 16:30",
"2014-01-31 15:30", "2014-01-31 16:30",
"2014-02-01 15:30", "2014-02-01 16:30",
"2014-02-02 15:30", "2014-02-02 16:30",
"2014-02-03 15:30", "2014-02-03 16:30",
"2014-02-04 15:30", "2014-02-04 16:30",
"2014-02-05 15:30", "2014-02-05 16:30",
"2014-02-06 15:30", "2014-02-06 16:30",
"2014-02-07 15:30", "2014-02-07 16:30",
"2014-02-08 15:30", "2014-02-08 16:30",
"2014-02-09 15:30", "2014-02-09 16:30",
"2014-02-10 15:30", "2014-02-10 16:30",
"2014-02-11 15:30", "2014-02-11 16:30",
"2014-02-12 15:30", "2014-02-12 16:30",
"2014-02-13 15:30", "2014-02-13 16:30",
"2014-02-14 15:30", "2014-02-14 16:30",
"2014-02-15 15:30", "2014-02-15 16:30",
"2014-02-16 15:30", "2014-02-16 16:30",
"2014-02-17 15:30", "2014-02-17 16:30",
"2014-02-18 15:30", "2014-02-18 16:30",
"2014-02-19 15:30", "2014-02-19 16:30",
"2014-02-20 15:30", "2014-02-20 16:30",
"2014-02-21 15:30", "2014-02-21 16:30",
"2014-02-22 15:30", "2014-02-22 16:30",
"2014-02-23 15:30", "2014-02-23 16:30",
"2014-02-24 15:30", "2014-02-24 16:30",
"2014-02-25 15:30", "2014-02-25 16:30",
"2014-02-26 15:30", "2014-02-26 16:30",
"2014-02-27 15:30", "2014-02-27 16:30",
"2014-02-28 15:30", "2014-02-28 16:30",
"2014-03-01 15:30", "2014-03-01 16:30",
"2014-03-02 15:30", "2014-03-02 16:30",
"2014-03-03 15:30", "2014-03-03 16:30",
"2014-03-04 15:30", "2014-03-04 16:30",
"2014-03-05 15:30", "2014-03-05 16:30",
"2014-03-06 15:30", "2014-03-06 16:30",
"2014-03-07 15:30", "2014-03-07 16:30",
"2014-03-08 15:30", "2014-03-08 16:30",
"2014-03-09 15:30", "2014-03-09 16:30",
"2014-03-10 15:30", "2014-03-10 16:30",
"2014-03-11 15:30", "2014-03-11 16:30",
"2014-03-12 15:30", "2014-03-12 16:30",
"2014-03-13 15:30", "2014-03-13 16:30",
"2014-03-14 15:30", "2014-03-14 16:30",
"2014-03-15 15:30", "2014-03-15 16:30",
"2014-03-16 15:30", "2014-03-16 16:30",
"2014-03-17 15:30", "2014-03-17 16:30",
"2014-03-18 15:30", "2014-03-18 16:30",
"2014-03-19 15:30", "2014-03-19 16:30",
"2014-03-20 15:30", "2014-03-20 16:30",
"2014-03-21 15:30", "2014-03-21 16:30",
"2014-03-22 15:30", "2014-03-22 16:30",
"2014-03-23 15:30", "2014-03-23 16:30",
"2014-03-24 15:30", "2014-03-24 16:30",
"2014-03-25 15:30", "2014-03-25 16:30",
"2014-03-26 15:30", "2014-03-26 16:30",
"2014-03-27 15:30", "2014-03-27 16:30",
"2014-03-28 15:30", "2014-03-28 16:30",
"2014-03-29 15:30", "2014-03-29 16:30",
"2014-03-30 13:30", "2014-03-30 14:29:58.593750
每个位置的PM2.5值首先列在顶部,然后显示纬度和经度,日期列在底部。这只是 PM2.5 数据的一个例子,我的输出中还有很多,但这就是给我的时间和位置。它们井井有条,但它没有以一种有效的方式将 PM2.5 与位置和日期相匹配。理想情况下,我们希望每个点的月平均值,而不是每日值。我们还希望命令的输出给出一个位置的平均值,然后是与 PM 2.5 平均值相对应的纬度和经度值,然后是日期,该日期将持续到所有位置。所有这些都是并排的,将采用我们需要的格式。我对此非常陌生,希望我的问题有意义。我将不胜感激。谢谢!
答: 暂无答案
评论