在不一致的时间序列数据集中过滤掉特定时差内的值

Filter out values within certain time differences within inconsistent time series dataset

提问人:James White 提问时间:10/30/2023 最后编辑:James White 更新时间:10/31/2023 访问量:87

问:

我有时间序列数据集,其中包含在不同采样位置(“site_no”)的不同频率下测量的值。我想过滤这个数据集,以快速连续删除大量样本 - 在我的情况下,在 15 分钟内。下面是一个简化的示例:

library(lubridate)
set.seed(42)
n_sites <- 5
n_rows <- 100
df <- data.frame(
 Date_time = ymd_hms("2013-01-01 10:17:00", tz = "GMT") + minutes(0:(n_sites * n_rows - 1) * 2),
site_no = as.character(rep(1:n_sites, each = n_rows)),
 Value = rnorm(n_sites * n_rows))
df2 <- data.frame(Date_time = rep(ymd_hms("2013-01-02 05:00:00", tz = "GMT"),times=5),
              site_no = as.character(c(1:5)),
              Value = c(10,10,10,10,10))
df <- rbind(df,df2)
df <- df[order(df$site_no,df$Date_time),]

对于每个站点编号 ('site_no'),我想做的是根据以下条件输出一个新的数据框:

  • 选择每个site_no的第一行(最早的日期/时间)
  • 从每个site_no的第一行开始,未来最多搜索 15 分钟;
  • 识别最大时差值小于或等于 15 分钟的下一行;
  • 删除任何具有时间差的行;
  • 在下一个时间步骤中重复此过程;

例如,对于site_no“1”,第一个时间步长是上午 10:17。然后,我想删除上午 10:19-10:29(第 2-7 行)之间的时间值,并保留第 8 行,其“date_time”时间戳为上午 10:31。这是因为此值是 15 分钟窗口内上午 10:17 的最大时间差。从上午 10:31(第 8 行)开始,我想删除第 9-14 行(上午 10:33-10:43),并选择时间戳为 10:45am - 14 分钟后的第 15 行上午 10:31(15 分钟窗口内的最大时差)。

最后,如果这一行与前一行之间的时间差为 >15 分钟,我想保留这两个时间。因此,在此示例中,我想将每site_no的最后一行保留在凌晨 5:00。

如果有可能以降低数据处理能力的方式(即矢量化方法而不是显式循环)来实现这一点,那就太好了,因为我有一个非常大的数据集。

提前非常感谢。

R DPLYR 时间序列 数据表 润滑剂

评论

0赞 r2evans 10/30/2023
由于对特定行的选择取决于找到的前一行,因此需要某种形式的累积方法(或类似的函数)。我找不到一种方法可以在不使用 或全宽的情况下做到这一点。我怀疑你最好使用矢量化函数做一个简单的循环(一次一个)......我怀疑这是效率最低的。另一种方法是使用类似 or 包的东西,这些包会根据时间跨度移动窗口,但是......它们并不总是会更快,只是对你来说更方便。cumsumReduce(..)frollapplysite_norunnerslider

答:

2赞 r2evans 10/30/2023 #1

我不知道你可以在没有循环的情况下做到这一点。这是一个简单的函数,它尽可能有效地循环,按找到的日期进行限制。最坏的情况是当所有 s 都超过 15 分钟时,在这种情况下,这将遍历向量中的每个值。diff

笔记:

  1. 每当我有一个循环并且我并不总是 100% 它有一个明确的退出策略时,我就会设置一个迭代限制以防止无限循环。我在这里使用 ,这意味着它循环的次数永远不会超过输入向量中的值。这可能不是绝对必要的,但我已经用“显然它不会无限”(以及随后的“哎呀”)咬了自己太多次,至少在开发中不在这里这样做。whilemaxiters=length(tm)

  2. 数据必须按每个组中的日期进行预排序。site_no

  3. 分组必须在函数外部处理。site_no

功能:


fun <- function(tm, mins = 15, maxiters = length(tm), debug = TRUE) {
  out <- replace(tm, -1, tm[1][NA])
  lastused <- which.max(!is.na(out))
  iter <- 0
  while (iter < maxiters) {
    if (lastused >= length(tm)) break
    iter <- iter + 1
    diffs <- as.numeric(tm[-(1:lastused)] - tm[lastused], units = "mins")
    if (any(found <- (diffs <= mins)) ) {
      nextused <- sum(found)
      out[(lastused+1):(lastused+nextused-1)] <- tm[lastused]
      out[lastused + nextused] <- tm[lastused + nextused]
      lastused <- lastused + nextused
    } else {
      out[lastused + 1] <- tm[lastused + 1]
      lastused <- lastused + 1
    }
  }
  if (debug) message("# took ", iter, " iterations")
  out
}

德普莱尔

library(dplyr)
df %>%
  mutate(prevtime = fun(Date_time), .by = site_no) %>%
  slice_head(n = 1, by = c("site_no", "prevtime"))
# # took 16 iterations
# # took 16 iterations
# # took 16 iterations
# # took 16 iterations
# # took 16 iterations
#              Date_time site_no        Value            prevtime
# 1  2013-01-01 10:17:00       1  1.370958447 2013-01-01 10:17:00
# 2  2013-01-01 10:31:00       1 -0.094659038 2013-01-01 10:31:00
# 3  2013-01-01 10:45:00       1 -0.133321336 2013-01-01 10:45:00
# 4  2013-01-01 10:59:00       1 -1.781308434 2013-01-01 10:59:00
# 5  2013-01-01 11:13:00       1  0.460097355 2013-01-01 11:13:00
# 6  2013-01-01 11:27:00       1 -1.717008679 2013-01-01 11:27:00
# 7  2013-01-01 11:41:00       1  0.758163236 2013-01-01 11:41:00
# 8  2013-01-01 11:55:00       1  0.655647883 2013-01-01 11:55:00
# 9  2013-01-01 12:09:00       1  0.679288816 2013-01-01 12:09:00
# 10 2013-01-01 12:23:00       1  1.399736827 2013-01-01 12:23:00
# 11 2013-01-01 12:37:00       1 -1.043118939 2013-01-01 12:37:00
# 12 2013-01-01 12:51:00       1  0.463767589 2013-01-01 12:51:00
# 13 2013-01-01 13:05:00       1 -1.194328895 2013-01-01 13:05:00
# 14 2013-01-01 13:19:00       1 -0.476173923 2013-01-01 13:19:00
# 15 2013-01-01 13:33:00       1  0.079982553 2013-01-01 13:33:00
# 16 2013-01-01 13:35:00       1  0.653204340 2013-01-01 13:35:00
# 17 2013-01-02 05:00:00       1 10.000000000 2013-01-02 05:00:00
# 18 2013-01-01 13:37:00       2  1.200965376 2013-01-01 13:37:00
# 19 2013-01-01 13:51:00       2 -0.122350172 2013-01-01 13:51:00
# 20 2013-01-01 14:05:00       2 -1.661099080 2013-01-01 14:05:00
# 21 2013-01-01 14:19:00       2 -1.470435741 2013-01-01 14:19:00
# 22 2013-01-01 14:33:00       2 -1.224747950 2013-01-01 14:33:00
# 23 2013-01-01 14:47:00       2 -1.097113768 2013-01-01 14:47:00
# 24 2013-01-01 15:01:00       2 -0.444684005 2013-01-01 15:01:00
# 25 2013-01-01 15:15:00       2 -1.056368413 2013-01-01 15:15:00
# 26 2013-01-01 15:29:00       2 -0.007762034 2013-01-01 15:29:00
# 27 2013-01-01 15:43:00       2 -0.362738416 2013-01-01 15:43:00
# 28 2013-01-01 15:57:00       2 -0.229778139 2013-01-01 15:57:00
# 29 2013-01-01 16:11:00       2  0.643008700 2013-01-01 16:11:00
# 30 2013-01-01 16:25:00       2 -0.279259373 2013-01-01 16:25:00
# 31 2013-01-01 16:39:00       2 -0.345087978 2013-01-01 16:39:00
# 32 2013-01-01 16:53:00       2  1.815228446 2013-01-01 16:53:00
# 33 2013-01-01 16:55:00       2  0.128821429 2013-01-01 16:55:00
# 34 2013-01-02 05:00:00       2 10.000000000 2013-01-02 05:00:00
# 35 2013-01-01 16:57:00       3 -2.000929238 2013-01-01 16:57:00
# 36 2013-01-01 17:11:00       3 -1.054055782 2013-01-01 17:11:00
# 37 2013-01-01 17:25:00       3  0.495619642 2013-01-01 17:25:00
# 38 2013-01-01 17:39:00       3 -0.351512874 2013-01-01 17:39:00
# 39 2013-01-01 17:53:00       3 -0.658503426 2013-01-01 17:53:00
# 40 2013-01-01 18:07:00       3 -0.390965408 2013-01-01 18:07:00
# 41 2013-01-01 18:21:00       3  1.258481665 2013-01-01 18:21:00
# 42 2013-01-01 18:35:00       3 -0.971385229 2013-01-01 18:35:00
# 43 2013-01-01 18:49:00       3 -0.738440754 2013-01-01 18:49:00
# 44 2013-01-01 19:03:00       3 -1.851555663 2013-01-01 19:03:00
# 45 2013-01-01 19:17:00       3  0.573751697 2013-01-01 19:17:00
# 46 2013-01-01 19:31:00       3 -1.242670271 2013-01-01 19:31:00
# 47 2013-01-01 19:45:00       3  0.043722008 2013-01-01 19:45:00
# 48 2013-01-01 19:59:00       3  0.446041053 2013-01-01 19:59:00
# 49 2013-01-01 20:13:00       3  0.097340485 2013-01-01 20:13:00
# 50 2013-01-01 20:15:00       3 -1.625616739 2013-01-01 20:15:00
# 51 2013-01-02 05:00:00       3 10.000000000 2013-01-02 05:00:00
# 52 2013-01-01 20:17:00       4 -0.004620768 2013-01-01 20:17:00
# 53 2013-01-01 20:31:00       4  0.992943637 2013-01-01 20:31:00
# 54 2013-01-01 20:45:00       4  0.586807720 2013-01-01 20:45:00
# 55 2013-01-01 20:59:00       4  0.189128812 2013-01-01 20:59:00
# 56 2013-01-01 21:13:00       4 -0.835205805 2013-01-01 21:13:00
# 57 2013-01-01 21:27:00       4 -0.073458335 2013-01-01 21:27:00
# 58 2013-01-01 21:41:00       4 -0.434617039 2013-01-01 21:41:00
# 59 2013-01-01 21:55:00       4  1.353361894 2013-01-01 21:55:00
# 60 2013-01-01 22:09:00       4 -0.290145312 2013-01-01 22:09:00
# 61 2013-01-01 22:23:00       4 -0.336311209 2013-01-01 22:23:00
# 62 2013-01-01 22:37:00       4  1.628442266 2013-01-01 22:37:00
# 63 2013-01-01 22:51:00       4 -1.109418760 2013-01-01 22:51:00
# 64 2013-01-01 23:05:00       4 -0.195656817 2013-01-01 23:05:00
# 65 2013-01-01 23:19:00       4 -0.301869926 2013-01-01 23:19:00
# 66 2013-01-01 23:33:00       4 -0.255607655 2013-01-01 23:33:00
# 67 2013-01-01 23:35:00       4  0.931032901 2013-01-01 23:35:00
# 68 2013-01-02 05:00:00       4 10.000000000 2013-01-02 05:00:00
# 69 2013-01-01 23:37:00       5  1.334912585 2013-01-01 23:37:00
# 70 2013-01-01 23:51:00       5  0.655511883 2013-01-01 23:51:00
# 71 2013-01-02 00:05:00       5 -0.777351759 2013-01-02 00:05:00
# 72 2013-01-02 00:19:00       5 -1.453529565 2013-01-02 00:19:00
# 73 2013-01-02 00:33:00       5  0.152608159 2013-01-02 00:33:00
# 74 2013-01-02 00:47:00       5  0.890356305 2013-01-02 00:47:00
# 75 2013-01-02 01:01:00       5  1.429338080 2013-01-02 01:01:00
# 76 2013-01-02 01:15:00       5  0.546115158 2013-01-02 01:15:00
# 77 2013-01-02 01:29:00       5  1.618343936 2013-01-02 01:29:00
# 78 2013-01-02 01:43:00       5 -1.083075142 2013-01-02 01:43:00
# 79 2013-01-02 01:57:00       5 -0.009056475 2013-01-02 01:57:00
# 80 2013-01-02 02:11:00       5 -0.283647452 2013-01-02 02:11:00
# 81 2013-01-02 02:25:00       5  0.761863447 2013-01-02 02:25:00
# 82 2013-01-02 02:39:00       5 -0.115135986 2013-01-02 02:39:00
# 83 2013-01-02 02:53:00       5  0.121258850 2013-01-02 02:53:00
# 84 2013-01-02 02:55:00       5 -0.011221686 2013-01-02 02:55:00
# 85 2013-01-02 05:00:00       5 10.000000000 2013-01-02 05:00:00

数据表

library(data.table)
as.data.table(df)[, prevtime := fun(Date_time), by = .(site_no)
                  ][, .SD[1,], by = .(site_no, prevtime)
                    ][, prevtime := NULL]

(列的顺序不同,否则与上面的 dplyr 方法相同。

基础 R

工作量稍大,但它产生的结果与上面的 dplyr 和 data.table 相同。

split(df, df$site_no) |>
  lapply(function(site) {
    transform(site, prevtime = fun(Date_time, debug=F)) |>
      transform(grp = cumsum(c(TRUE, prevtime[-1] != prevtime[-length(prevtime)]))) |>
      subset(ave(grp, grp, FUN = seq_along) == 1)
  }) |>
  do.call(rbind.data.frame, args = _) |>
  subset(select = -c(prevtime, grp))

基准/比较

这三者都生成相同的输出,尽管有小的警告:该方法对列和不同的类对象重新排序,并且 base-R 解决方案保留原始行名。这两者都是装饰性的,但为了进行基准测试,我将修复这些更改,以便确认所有输出都是相同的。data.tablebench::mark(.)

bench::mark(
  dplyr = {
    df %>%
      mutate(prevtime = fun(Date_time, debug=F), .by = site_no) %>%
      slice_head(n = 1, by = c("site_no", "prevtime")) %>%
      select(-prevtime)
  },
  data.table = {
    as.data.table(df)[, prevtime := fun(Date_time, debug=F), by = .(site_no)
                      ][, .SD[1,], by = .(site_no, prevtime)
                        ][, prevtime := NULL] |>
      # data.table is reordering columns above, aesthetic fix only for bench::mark
      setcolorder(names(df)) |>
      as.data.frame()
  },
  baseR = {
    split(df, df$site_no) |>
      lapply(function(site) {
        transform(site, prevtime = fun(Date_time, debug=F)) |>
          transform(grp = cumsum(c(TRUE, prevtime[-1] != prevtime[-length(prevtime)]))) |>
          subset(ave(grp, grp, FUN = seq_along) == 1)
      }) |>
      do.call(rbind.data.frame, args = _) |>
      subset(select = -c(prevtime, grp)) |>
      # the original row names are preserved, aesthetic fix only for bench::mark
      `rownames<-`(NULL)
  }
)

# # A tibble: 3 × 13
#   expression      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result        memory time            gc               
#   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list>        <list> <list>          <list>           
# 1 dplyr          11ms  11.32ms      85.0        NA     6.07    28     2      329ms <df [85 × 3]> <NULL> <bench_tm [30]> <tibble [30 × 3]>
# 2 data.table  10.65ms  11.13ms      81.9        NA     2.56    32     1      391ms <df [85 × 3]> <NULL> <bench_tm [33]> <tibble [33 × 3]>
# 3 baseR        6.98ms   7.45ms     130.         NA     2.66    49     1      376ms <df [85 × 3]> <NULL> <bench_tm [50]> <tibble [50 × 3]>

我承认,我有点惊讶 base-R 是三者中最快(也是最慢的!),但对于更大的数据,情况可能并非总是如此。data.table

评论

1赞 James White 10/31/2023
这太棒了,非常感谢您提供如此详细且解释清楚的解决方案。非常感谢。
1赞 mapardo 10/31/2023 #2

使用 nest/purrr 运行的替代函数:

filterDate <- function(df) {
  t <- df %>% pull(Date_time)
  i <- 1
  p <- c(i)
  m <- length(t)
  while(i < m) {
    j <- 0
    d <- as.numeric(t[seq(i+1,length(t))] - t[i], units = "mins")
    if (any(d <= 15 & d > 0)) {
      i <- max(which(d <= 15 & d > 0)) + i
    } else {
      i <- min(which(d > 0)) + i
    }
    p <- c(p,i)
  }
  df.filter <- df[p,]
  return(df.filter)
}

巢/咕噜咕噜运行:

df %>% nest(d=-c(site_no)) %>% mutate(o=purrr::map(d,filterDate)) %>% unnest(o) %>% 
  transmute(Date_time,site_no,Value) %>% as.data.frame()

基准测试结果类似于 dplyr 算法:

# A tibble: 4 × 13
  expression      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result        memory                 time            gc               
  <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list>        <list>                 <list>          <list>           
1 dplyr        22.8ms   25.9ms      39.9  586.96KB     4.70    17     2      426ms <df [85 × 3]> <Rprofmem [1,139 × 3]> <bench_tm [19]> <tibble [19 × 3]>
2 data.table   19.4ms   19.8ms      50.3    2.06MB     7.54    20     3      398ms <df [85 × 3]> <Rprofmem [1,361 × 3]> <bench_tm [23]> <tibble [23 × 3]>
3 baseR        13.4ms   13.8ms      70.0   789.2KB    10.0     28     4      400ms <df [85 × 3]> <Rprofmem [1,578 × 3]> <bench_tm [32]> <tibble [32 × 3]>
4 new          26.1ms   26.4ms      37.8   482.6KB     4.73    16     2      423ms <df [85 × 3]> <Rprofmem [1,088 × 3]> <bench_tm [18]> <tibble [18 × 3]>
>