提问人:YOUNGKYUN OH 提问时间:11/17/2023 最后编辑:YOUNGKYUN OH 更新时间:11/19/2023 访问量:28
如何将此源更改为逻辑回归?[关闭]
how can I change this source to logistic regression? [closed]
问:
我想将此代码更改为逻辑回归!!但我不知道该怎么做:(请帮帮我!!
import tensorflow as tf
import numpy as np
import time
x = tf.constant([3., 4., 5., 6., 7., 8.])
y = tf.constant([1., 1., 1., 0., 0., 0.])
w = tf.Variable(1.)
b = tf.Variable(0.5)
learning_rate = 0.01
epochs = 1000
def train_step(x, y):
with tf.GradientTape() as t:
y_hat = w * x + b
loss = (y_hat - y) ** 2
grads = t.gradient(loss, [w, b])
w.assign_sub(learning_rate * grads[0])
b.assign_sub(learning_rate * grads[1])
start_t = time.time()
train_step_graph = tf.function(train_step)
for i in range(epochs):
for k in range(len(y)):
train_step_graph(x[k], y[k])
print(time.time() - start_t)
print('w: {:8.5f} b: {:8.5f}'.format(w.numpy(), b.numpy()))
f = 'x:{:8.5f} --> y:{:8.5f}'
for k in range(len(y)):
y_hat = w * x[k] + b
print(f.format(x[k].numpy(), y_hat.numpy()))
我听说它可能很简单,只是尝试将其更改为使用 sigmoid 函数?y_hat = w * x + b
但我完全不知道:(太可悲了。
答: 暂无答案
评论