提问人:Ahsk 提问时间:6/30/2023 最后编辑:user438383Ahsk 更新时间:7/1/2023 访问量:138
如何显示成对比较图的字母?
How to display letters to pairwise comparison plot?
问:
如何在 Kruskal Walllis 检验的封装图上显示字母?这是一个基于这个问题的可重复的例子。ggstatsplot
set.seed(123)
# Create vector for number of cases per month
cases_per_month <- c(10, 25, 20, 20, 25, 20, 19, 5)
# Create vector for months (April to November)
months <- c("April", "May", "June", "July", "August", "September", "October", "November")
# Create empty vectors for final dataset
dataset <- data.frame(mean_severity = numeric(), month = character())
# Generate dataset
dat <- list()
for (i in 1:length(months)) {
month <- rep(months[i], cases_per_month[i])
severity <- sample.int(n = 10, size = cases_per_month[i], replace = TRUE)
# generate some differences in the sample
if (i %in% c(1, 4, 7)){
severity <- severity^2
}
temp_data <- data.frame(mean_severity = severity, month = month)
dat[[i]] <- rbind(dataset, temp_data)
}
# Using rbind to combine rows
dat <- do. Call(rbind, dat)
目前,我有显示 p 值的条形图。我想要字母而不是显示 p 值的条形图。这个问题已经在这里得到解答。显然,函数应该显示字母而不是 p 值,如下面的示例所示,但在我的情况下,它无限期地运行而不显示任何字母。有没有其他显示字母的方式?AddLetters
此处显示字母而不是条形图的示例图
答:
2赞
David
7/1/2023
#1
我们必须更改输入以匹配 .multcompLetters
这是如何做到的。
library(Matrix)
library(PMCMRplus)
library(ggstatsplot)
#this does the plot in your post
p <- ggbetweenstats(data = dat, y = mean_severity, x = month, type = "nonparametric")
#this does the Dunn pairwise tests
#kwAllPairsDunnTest(mean_severity ~ month, data=dat, p.adjust.method = "holm")
#now we have to format the p-value matrix into a symmetric matrix for multcompLetters
pval.matrix <- kwAllPairsDunnTest(x = dat$mean_severity,
g = as.factor(dat$month), p.adjust.method = "holm")
> pval.matrix$p.value
April August July June May November October
August 0.004092534 NA NA NA NA NA NA
July 1.000000000 0.001097334 NA NA NA NA NA
June 0.004907027 1.000000000 0.001911186 NA NA NA NA
May 0.029411147 1.000000000 0.015500796 1.0000000000 NA NA NA
November 0.136459815 1.000000000 0.167977744 1.0000000000 1.000000000 NA NA
October 1.000000000 0.000118815 1.000000000 0.0002455998 0.002648157 0.07101786 NA
September 0.009390306 1.000000000 0.004164969 1.0000000000 1.000000000 1.00000000 0.0006461642
在操作成对的 p 值矩阵后,我们从包中使用:forceSymmetric
Matrix
#square and diagonalize the p-value matrix
new.pval.matrix <- rbind(1,pval.matrix$p.value)
new.pval.matrix <- cbind(new.pval.matrix, 1)
diag(new.pval.matrix) <- 1
new.pval.matrix <- as.matrix(forceSymmetric(new.pval.matrix, "L"))
#Add September to the row and column names
rownames(new.pval.matrix)[dim(pval.matrix$p.value)+1] <-
rownames(pval.matrix$p.value)[dim(pval.matrix$p.value)[1]]
colnames(new.pval.matrix)[dim(pval.matrix$p.value)+1] <-
rownames(pval.matrix$p.value)[dim(pval.matrix$p.value)[1]]
> new.pval.matrix
April August July June May November October September
April 1.000000000 0.004092534 1.000000000 0.0049070268 0.029411147 0.13645981 1.0000000000 0.0093903064
August 0.004092534 1.000000000 0.001097334 1.0000000000 1.000000000 1.00000000 0.0001188150 1.0000000000
July 1.000000000 0.001097334 1.000000000 0.0019111864 0.015500796 0.16797774 1.0000000000 0.0041649687
June 0.004907027 1.000000000 0.001911186 1.0000000000 1.000000000 1.00000000 0.0002455998 1.0000000000
May 0.029411147 1.000000000 0.015500796 1.0000000000 1.000000000 1.00000000 0.0026481566 1.0000000000
November 0.136459815 1.000000000 0.167977744 1.0000000000 1.000000000 1.00000000 0.0710178590 1.0000000000
October 1.000000000 0.000118815 1.000000000 0.0002455998 0.002648157 0.07101786 1.0000000000 0.0006461642
September 0.009390306 1.000000000 0.004164969 1.0000000000 1.000000000 1.00000000 0.0006461642 1.0000000000
现在有效:multcompLetters
> multcompLetters(new.pval.matrix)
April August July June May November October September
"a" "b" "a" "b" "b" "ab" "a" "b"
我们可以点击您的链接了解如何准备 CLD:
data.summary <- group_by(dat, month) %>%
summarise(mean=mean(mean_severity), sd=sd(mean_severity)) %>%
arrange(desc(mean))
#match ordering of the factors [month]
data.summary <- data.summary[order(data.summary$month),]
CLD <- multcompLetters(new.pval.matrix)
data.summary$CLD <- CLD$Letters
#you'll likely need to change these graphics options for your purposes
p + geom_text(data = data.summary, aes(label=CLD,x=month, y=mean),
position=position_dodge2(0.75), hjust = 3)
评论
AddLetters
"CLD"
geom_text
Error in x$terms %||% attr(x, "terms") %||% stop("no terms component nor attribute") : no terms component nor attribute