一次透视多组列

pivot multiple sets of columns at once

提问人:Jake L 提问时间:12/20/2021 最后编辑:AndrewGBJake L 更新时间:12/20/2021 访问量:524

问:

我有一个数据框,我在其中回归了一堆数据集,然后获取了这些数据集的子集并再次回归。这导致了一个数据帧,其中的列显示“完整”数据集的斜率、截距和标准误差,然后显示“子集”数据集的这些内容的更多列。

我想将数据集转换为长格式,其中一列显示它是哪种类型(完整或子集),然后其他列显示斜率、se、截距等。

我已经找到了一种方法,通过执行许多不同的时间,然后过滤到透视创建的新列匹配的位置,但这并不是最好的方法。我想知道是否有办法在透视函数中列出列集以跳过这一大块代码。reprex在下面。pivot_longer

# made dataframe
df <- 
  tribble(
    ~trial,   ~full_slope,    ~full_slope_se,    ~subset_slope,  ~subset_slope_se,
     1,            10,              1,                12,               2.5,
     2,             9,               1.2,             8.5,               3,
     3,             9.5,              2,               9.9,              3
  )


# pivot 

df %>%
  # first pivot the slope columns
  pivot_longer(cols = c(full_slope, subset_slope),
               names_to = "type",
               values_to = "slope") %>%

  # next pivot the SE columns
  pivot_longer(cols = c(full_slope_se, subset_slope_se),
               names_to = "type_se",
               values_to = "se") %>%

 # add a column for when they match up (slope and se both from same dataset, full or subset)
  mutate(
    data_type = 
      case_when(
        type == "full_slope" & type_se == "full_slope_se" ~ "full",
        type == "subset_slope" & type_se == "subset_slope_se" ~ "subset"
        )) %>%

  # remove rows that are musmatched
  filter(!is.na(data_type)) %>%

  # remove extra columns made by pivots
  select(-type, -type_se) %>%
  relocate(data_type, .after = trial)

这确实给了我想要的输出,我只是觉得这不能是我应该这样做的方式。提前致谢!

r pivot reshape tidyr 数据操作

评论


答:

3赞 r2evans 12/20/2021 #1

用:names_pattern=

df %>%
  pivot_longer(-trial, names_pattern = "([^_]*)_(.*)", names_to = c("data_table", ".value"))
# # A tibble: 6 x 4
#   trial data_table slope slope_se
#   <dbl> <chr>      <dbl>    <dbl>
# 1     1 full        10        1  
# 2     1 subset      12        2.5
# 3     2 full         9        1.2
# 4     2 subset       8.5      3  
# 5     3 full         9.5      2  
# 6     3 subset       9.9      3