提问人:Troy 提问时间:5/26/2017 更新时间:7/19/2018 访问量:6591
向逻辑回归 (glm) 模型添加多个解释变量会产生错误?
Adding more than one explanatory variable to Logistic Regression (glm) model gives an error?
问:
我尝试拟合以下线性模型:
ad.glm.all <- glm(WinLoss ~ Score + Margin + Opposition + Venue + Disposals + Marks + Goals + Behinds + Hitouts + Tackles + Rebound50s + Inside50s + Clearances + Clangers + FreesFor + ContendedPossessions + ContestedMarks + MarksInside50 + OnePercenters + Bounces+GoalAssists,
data = ad.train, family = binomial)
每次尝试运行此代码时,我都会收到以下错误消息:
glm.fit: algorithm did not convergeglm.fit: fitted probabilities numerically 0 or 1 occurred
当我查看这个回归模型的摘要时,我得到:
Call:
glm(formula = WinLoss ~ Score + Margin + Disposals + Marks +
Goals + Behinds + Hitouts + Tackles + Rebound50s + Inside50s +
Clearances + Clangers + FreesFor + ContendedPossessions +
ContestedMarks + MarksInside50 + OnePercenters + Bounces +
GoalAssists, family = binomial, data = ad.train)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.980e-05 -2.100e-08 2.100e-08 2.100e-08 3.569e-05
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.578e+00 2.502e+06 0.000 1
Score 4.194e+00 5.165e+04 0.000 1
Margin 2.187e+00 3.742e+03 0.001 1
Disposals 8.946e-02 3.549e+03 0.000 1
Marks 1.427e-01 1.938e+03 0.000 1
Goals -2.288e+01 3.082e+05 0.000 1
Behinds -7.034e+00 5.482e+04 0.000 1
Hitouts 3.640e-02 5.167e+03 0.000 1
Tackles 8.939e-01 7.075e+03 0.000 1
Rebound50s -2.064e-01 8.497e+03 0.000 1
Inside50s 5.645e-01 8.133e+03 0.000 1
Clearances -1.930e-01 1.525e+04 0.000 1
Clangers -2.040e-01 1.056e+04 0.000 1
FreesFor -7.699e-01 1.762e+04 0.000 1
ContendedPossessions -5.752e-01 7.424e+03 0.000 1
ContestedMarks -1.869e+00 1.069e+04 0.000 1
MarksInside50 6.742e-01 1.676e+04 0.000 1
OnePercenters 1.616e-01 6.888e+03 0.000 1
Bounces -8.763e-01 7.669e+03 0.000 1
GoalAssists 7.570e-01 3.299e+04 0.000 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1.2540e+02 on 91 degrees of freedom
Residual deviance: 7.1154e-09 on 72 degrees of freedom
AIC: 40
Number of Fisher Scoring iterations: 25
显然这里出了大问题,对吧?每个变量的 P 值不能全部为 1,而 Z 值全部为 0;右?
我给了它一个谷歌,我能找到的最好的是有人建议错误可能是由于变量太多(考虑到我有多少变量,这是有道理的)。所以我开始一个接一个地删除它们,每次尝试我仍然会得到错误,直到我只有一个变量 (x ~ y);只有这样我才会得到任何错误。
有人可以向我解释这个错误可能意味着什么吗?为什么我所有的 P 值都是 1 而 z 值是 0?
提前致谢!
-特洛伊
答: 暂无答案
评论