提问人:Mohit 提问时间:11/2/2022 最后编辑:CœurMohit 更新时间:11/11/2022 访问量:81
如何从组合表达式中确定 sop 和 pos 部分
How can I determine the sop and pos part from a combined expression
问:
F(A, B, C, D) = (D′ + AB′)(AD + C′)B′ + BD′(A′ + C′) + A′
就像这个组合表达式一样,SOP和POS都可用,我怎么知道哪些是sop,哪些是pos?
我试图从这个组合表达式中找到 sop 和 pos,但我不能。我们知道 (D′ + AB′)(AD + C′) 它是一个 pos 函数,它是一个 D′A + AB′ sop 函数。但是我不明白如何从组合表达式中找到两个 sop pos 都可用的地方。
答:
0赞
Axel Kemper
11/4/2022
#1
要将表达式确定为乘积总和,可以重写它:F
F(A, B, C, D) = (D' + AB')(AD + C')B' + BD'(A' + C') + A'
= (ADD' + C'D' + AAB'D + AB'C')B' + (A'BD' + BC'D') + A'
= (AB' + B'C'D' + AB'D + AB'C) + (A'BD' + BC'D') + A'
= C'D' + B'D + A'
结果是产品的总和。
真值表:
A B C D | F
------------+------
0 0 0 0 | 1
0 0 0 1 | 1
0 0 1 0 | 1
0 0 1 1 | 1
0 1 0 0 | 1
0 1 0 1 | 1
0 1 1 0 | 1
0 1 1 1 | 1
1 0 0 0 | 1
1 0 0 1 | 1
1 0 1 0 | 0
1 0 1 1 | 1
1 1 0 0 | 1
1 1 0 1 | 0
1 1 1 0 | 0
1 1 1 1 | 0
------------+-------
每一行都对应一个minterm,即输入(反转或非反转)的乘积。因此,真值表给出了乘积总和形式。F=1
要获得求和乘积形式,您可以取四行并反转输入(参见德摩根定律):F=0
A B C D |
--------------+------
1 0 1 0 | 0
1 1 0 1 | 0
1 1 1 0 | 0
1 1 1 1 | 0
--------------+------
(A'+B+C'+D)(A'+B'+C+D')(A'+B'+C'+D)(A'+B'+C'+D')
评论
0赞
Andrew
11/11/2022
请解释最后的“重写”;
0赞
Andrew
11/11/2022
#2
(D' + AB')(AD + C')B' + BD'(A' + C') + A'
D'ADB' + D'C'B' + AB'ADB' + AB'C'B' + BD'A' + BD'C' + A' distributive law
D'ADB' + D'C'B' + AB'ADB' + AB'C'B' + BD'C' + A' absorptive law
D'ADB' + D'C'B' + AB'D + AB'C' + BD'C' + A' idempotent law
0 A B' + D'C'B' + AB'D + AB'C' + BD'C' + A' complement law
0 + D'C'B' + AB'D + AB'C' + BD'C' + A' annulment law
D'C'B' + AB'D + AB'C' + BD'C' + A' identity law
D'C'B' + B'D + B'C' + BD'C' + A' absorptive law
B'C'D' + BC'D' + B'D + B'C' + A' commutative law
C'D'(B' + B) + B'D + B'C' + A' distributive law
C'D'1 + B'D + B'C' + A' complement law
C'D' + B'D + B'C' + A' identity law
C'D' + B'D + A' kmap reduction
(populating kmap in above order, B'C' is alreay included when we get to it)
kmap
BC\D 0 1
00 1 1
01 0 1
11 0 0
10 1 0
评论