ValueError:在使用 lfw 数据集和 mtcnn 模型创建 Sphereface 模型时,没有足够的值来解包(预期为 3,得到 2)

ValueError: not enough values to unpack (expected 3, got 2)in creating a Sphereface model using lfw dataset and mtcnn model

提问人:Emeka Nwocha 提问时间:11/14/2023 最后编辑:Emeka Nwocha 更新时间:11/23/2023 访问量:41

问:

我正在尝试使用 lfw 数据集和 mtcnn 模型创建一个 Sphereface 模型,以在不使用 dlib 库的情况下显示精度、召回率、F1 分数等评估值。

import os
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, average_precision_score
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
from joblib import dump
from mtcnn.mtcnn import MTCNN
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm

# Load the LFW dataset
def load_lfw_dataset(data_folder):
    images = []
    labels = []

    for person_name in os.listdir(data_folder):
        person_folder = os.path.join(data_folder, person_name)
        if os.path.isdir(person_folder):
            for filename in os.listdir(person_folder):
                if filename.endswith(".jpg"):
                    image_path = os.path.join(person_folder, filename)
                    images.append(cv2.imread(image_path, cv2.IMREAD_GRAYSCALE))
                    labels.append(person_name)

    return images, labels

# Detect and align faces using MTCNN
def detect_and_align_faces(images):
    detector = MTCNN()
    aligned_faces = []

    for img in images:
        faces = detector.detect_faces(img)

        if faces:
            x, y, w, h = faces[0]['box']
            face = img[y:y + h, x:x + w]
            aligned_faces.append(face)

    return aligned_faces

# Sphereface-like model architecture (example, adjust as needed)
class SphereFaceModel(torch.nn.Module):
    def __init__(self, num_classes):
        super(SphereFaceModel, self).__init__()
        # Example: Add Sphereface model layers

    def forward(self, x):
        # Example: Forward pass
        return x

# Extract features using Sphereface
def extract_features(model, aligned_faces):
    transform = transforms.Compose([
        transforms.ToPILImage(),
        transforms.Resize((112, 96)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5], std=[0.5]),
    ])

    features = []

    for face in aligned_faces:
        face = transform(face)
        face = face.unsqueeze(0)  # Add batch dimension

        # Example: Forward pass through the Sphereface model
        output = model(face)
        features.append(output.detach().numpy())

    return np.array(features)

# Train the Sphereface model (example, adjust as needed)
def train_sphereface_model(model, train_loader, optimizer, criterion, num_epochs=5):
    for epoch in range(num_epochs):
        for inputs, labels in tqdm(train_loader):
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

# Main function
def main():
    # Load LFW dataset
    data_folder = "lfw"  # Change this to the actual path of your LFW dataset
    images, labels = load_lfw_dataset(data_folder)

    # Split the dataset into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)

    # Detect and align faces
    X_train_aligned = detect_and_align_faces(X_train)
    X_test_aligned = detect_and_align_faces(X_test)

    # Example: Initialize Sphereface model (adjust as needed)
    num_classes = len(set(y_train))
    model = SphereFaceModel(num_classes)

    # Extract features
    X_train_features = extract_features(model, X_train_aligned)
    X_test_features = extract_features(model, X_test_aligned)

    # Train SVM classifier on extracted features
    classifier = make_pipeline(OneVsRestClassifier(SVC(probability=True)))
    classifier.fit(X_train_features.reshape(X_train_features.shape[0], -1), y_train)

    # Save the trained model
    model_filename = 'sphereface_model.joblib'
    dump(classifier, model_filename)  # Adjust the filename as needed

    # Evaluate the model
    y_pred = classifier.predict(X_test_features.reshape(X_test_features.shape[0], -1))

    # Confusion matrix
    tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

    # Precision, Recall, F1 Score
    precision = precision_score(y_test, y_pred, average='weighted')
    recall = recall_score(y_test, y_pred, average='weighted')
    f1 = f1_score(y_test, y_pred, average='weighted')

    # ROC Curve and AUC
    y_test_bin = label_binarize(y_test, classes=np.unique(y_test))
    y_pred_prob = classifier.predict_proba(X_test_features.reshape(X_test_features.shape[0], -1))

    fpr, tpr, _ = roc_curve(y_test_bin.ravel(), y_pred_prob.ravel())
    roc_auc = auc(fpr, tpr)

    # Mean Average Precision
    average_precision = average_precision_score(y_test_bin, y_pred_prob, average='micro')

    # Equal Error Rate (EER)
    eer = 0.5 * (1 - recall_score(y_test, y_pred, pos_label=0))

    # Print the results
    print(f'True Positive: {tp}')
    print(f'True Negative: {tn}')
    print(f'False Positive: {fp}')
    print(f'False Negative: {fn}')
    print(f'Precision: {precision}')
    print(f'Recall: {recall}')
    print(f'F1 Score: {f1}')
    print(f'ROC AUC: {roc_auc}')
    print(f'Mean Average Precision: {average_precision}')
    print(f'Equal Error Rate: {eer}')

if __name__ == "__main__":
    main()

回溯(最近一次调用最后一次): 文件“c:\Users\E N\Desktop\Face Recognition Models\Sphereface\lfw_main.py”,第 156 行,在 主要() 文件“c:\Users\E N\Desktop\Face Recognition Models\Sphereface\lfw_main.py”,第 100 行,在 main 中 X_train_aligned = detect_and_align_faces(X_train) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 文件“c:\Users\E N\Desktop\Face Recognition Models\Sphereface\lfw_main.py”,第 40 行,detect_and_align_faces 面 = detector.detect_faces(img) ^^^^^^^^^^^^^^^^^^^^^^^^^^ 文件“C:\Users\E N\Desktop\Face Recognition Models\Sphereface.venv\Lib\site-packages\mtcnn\mtcnn.py”,第 287 行,detect_faces 高度, 宽度, _ = img.shape ^^^^^^^^^^^^^^^^ ValueError:没有足够的值来解包(预期为 3,得到 2) 如何让它工作并将其应用于其他人脸识别算法?

python 脸识别 值错误

评论

1赞 furas 11/15/2023
始终将 FULL 错误消息(从单词“Traceback”开始)作为文本(不是屏幕截图,不是链接到外部门户)作为文本(不是屏幕截图,不是链接到外部门户)。完整的错误/回溯中还有其他有用的信息。
1赞 furas 11/15/2023
哪条线有问题?您没有显示完整的错误消息,因此我们无法看到它。不要指望我们会运行代码来查看完整的错误消息。此外,代码可以在我们的计算机上正常工作。我们看不到您的屏幕,也无法阅读您的脑海 - 您必须将所有有问题的详细信息(而不是在评论中)显示为文本(而不是图像)

答:

0赞 Bohdan 11/23/2023 #1

我能看到您错误的唯一原因是您的函数需要 cv2 图像列表,但得到其他东西(检查返回的内容)。detect_and_align_faces()train_test_split()

然后检查什么img

for img in images:
        faces = detector.detect_faces(img)

事实上。