提问人:momo 提问时间:4/8/2021 最后编辑:momo 更新时间:4/8/2021 访问量:528
在 tf.data 中切片会导致“迭代 'tf.Graph 执行中不允许出现 Tensor'“错误
Slicing in tf.data causes "iterating over `tf.Tensor` is not allowed in Graph execution" error
问:
我创建了一个数据集,如下所示,其中是图像文件路径列表,
例如。.我需要提取文件夹路径,例如,然后进行一些其他操作。我尝试使用以下函数来执行此操作。image_train_path
[b'/content/drive/My Drive/data/folder1/im1.png', b'/content/drive/My Drive/data/folder2/im6.png',...]
'/content/drive/My Drive/data/folder1'
preprocessData
dataset = tf.data.Dataset.from_tensor_slices(image_train_path)
dataset = dataset.map(preprocessData, num_parallel_calls=16)
在哪里:preprocessData
def preprocessData(images_path):
folder=tf.strings.split(images_path,'/')
foldername=tf.strings.join(tf.slice(folder,(0,),(6,)),'/')
....
但是,切片线会导致以下错误:
OperatorNotAllowedInGraphError: in user code:
<ipython-input-21-2a9827982c16>:4 preprocessData *
foldername=tf.strings.join(tf.slice(folder,(0,),(6,)),'/')
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:210 wrapper **
result = dispatch(wrapper, args, kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:122 dispatch
result = dispatcher.handle(args, kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/ragged/ragged_dispatch.py:130 handle
for elt in x:
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:524 __iter__
self._disallow_iteration()
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:520 _disallow_iteration
self._disallow_in_graph_mode("iterating over `tf.Tensor`")
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:500 _disallow_in_graph_mode
" this function with @tf.function.".format(task))
OperatorNotAllowedInGraphError: iterating over `tf.Tensor` is not allowed in Graph execution. Use Eager execution or decorate this function with @tf.function.
我在 Tf2.4 和 tf nightly 中都尝试过这个。我尝试过装饰和使用.总是给出相同的错误。@tf.function
tf.data.experimental.enable_debug_mode()
我不太明白哪个部分导致了“迭代”,尽管我想问题出在切片上。有没有其他方法可以做到这一点?
答:
1赞
Lescurel
4/8/2021
#1
函数 tf.strings.join
需要 Tensor 的列表,如文档所述:
参数
inputs:tf 的列表。相同大小和 tf.string dtype 的张量对象。
tf.slice
返回一个 Tensor,然后 join 函数将尝试遍历它,从而导致错误。
您可以使用简单的列表推导式来馈送函数:
def preprocessData(images_path):
folder=tf.strings.split(images_path,'/')
foldername=tf.strings.join([folder[i] for i in range(6)],"/")
return foldername
评论
preprocessData