java-处理浮点舍入误差,如何保持弧度合理

java-processing floating point rounding error, how to keep radians rational

提问人:cubesareneat 提问时间:1/11/2021 最后编辑:cubesareneat 更新时间:1/12/2021 访问量:123

问:

我修改了这个 arcball 类,以便每次调用 arcball.rollforward(PI/180);将矩阵旋转 1 度。 我试图设置它,以便使用累积的浮点数 rotatebywithincludedfloaterror 调用 arcball.rollback(),但它的度数误差与没有浮点数错误的 360 度回滚相同。 这是 1000 次完整旋转后它偏离的距离,它应该是顶部立方体在 x 上的 1:1 反射

degree error

这是主要功能,具有 1 * 360 度旋转的循环和用于测试的帧速率(多次旋转将帧速率设置为 900,因此不会永远使用)

Arcball arcball;

int i;

//framecount
int fcount, lastm;
float frate;
int fint = 3;

boolean[] keys = new boolean[13];
    final int w = 0;


void setup() {
  size(900, 700, P3D); 
  frameRate(60);
  noStroke();
  arcball = new Arcball(width/2, height/2, 100);   //100 is radius
}

void draw() {
  lights();
  background(255,160,122);
  
  print(" \n degree = " + i );
  i++;
  if(i <= (360 * 1)) { arcball.rollforward(PI/180); }
  else { print(" break"); }
  
  if(keys[w]) { arcball.rollforward(PI/180); }

  translate(width/2, height/2-100, 0);
  box(50);
   
  translate(0, 200, 0);
  arcball.run();
  box(50);  
  
  
  fcount += 1;
  int m = millis();
  if (m - lastm > 1000 * fint) {
    frate = float(fcount) / fint;
    fcount = 0;
    lastm = m;
    println("fps: " + frate);
  }
                           
}

void keyPressed() {
  switch(key) {
    case 119: 
        keys[w] = true;
        break;
  }
}
void keyReleased() {
  switch(key) {
    case 119: 
        keys[w] = false;
        break;
    } 
}

和 Arcball 类

// Ariel and V3ga's arcball class with a couple tiny mods by Robert Hodgin and smaller mods by cubesareneat

class Arcball {
  float center_x, center_y, radius;
  Vec3 v_down, v_drag;
  Quat q_now, q_down, q_drag;
  Vec3[] axisSet;
  int axis;
  float mxv, myv;
  float x, y;
  
  float degreeW_count = 0;
  float degreeS_count = 0;
  float rotatebywithincludedfloaterror =0;
  
  Arcball(float center_x, float center_y, float radius){
    this.center_x = center_x;
    this.center_y = center_y;
    this.radius = radius;

    v_down = new Vec3();
    v_drag = new Vec3();

    q_now = new Quat();
    q_down = new Quat();
    q_drag = new Quat();

    axisSet = new Vec3[] {new Vec3(1.0f, 0.0f, 0.0f), new Vec3(0.0f, 1.0f, 0.0f), new Vec3(0.0f, 0.0f, 1.0f)};
    axis = -1;  // no constraints...    
  }

  void rollforward(float radians2turn) { 
    rotatebywithincludedfloaterror = rotatebywithincludedfloaterror + (-1 * (((sin(radians2turn) * radius))/2));
    if(degreeW_count >= 360) {
      arcball.rollback(rotatebywithincludedfloaterror);
      degreeW_count = 0;
      rotatebywithincludedfloaterror = 0;
    }
    rollortilt(0, -1 * (((sin(radians2turn) * radius))/2)); 
    degreeW_count = degreeW_count + 1; // need to edit this later to work with rotations other then 1 degree
  }
  void rollback(float radians2turn) { 
    rollortilt(0, ((sin(radians2turn) * radius))/2);
  }
  
  void rollortilt(float xtra, float ytra){
    q_down.set(q_now);
    v_down = XY_to_sphere(center_x, center_y);
    q_down.set(q_now);
    q_drag.reset();
    
    v_drag = XY_to_sphere(center_x + xtra, center_y + ytra);
    q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag)); 
  }

/*
  void mousePressed(){
    v_down = XY_to_sphere(mouseX, mouseY);  
    q_down.set(q_now);
    q_drag.reset();
  }

  void mouseDragged(){
    v_drag = XY_to_sphere(mouseX, mouseY);
    q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag));
  }
*/
  void run(){
    q_now = Quat.mul(q_drag, q_down);
    applyQuat2Matrix(q_now);
    
    x += mxv;
    y += myv;
    mxv -= mxv * .01;
    myv -= myv * .01;
  }
  
  Vec3 XY_to_sphere(float x, float y){
    Vec3 v = new Vec3();
    v.x = (x - center_x) / radius;
    v.y = (y - center_y) / radius;

    float mag = v.x * v.x + v.y * v.y;
    if (mag > 1.0f){
      v.normalize();
    } else {
      v.z = sqrt(1.0f - mag);
    }

    return (axis == -1) ? v : constrain_vector(v, axisSet[axis]);
  }

  Vec3 constrain_vector(Vec3 vector, Vec3 axis){
    Vec3 res = new Vec3();
    res.sub(vector, Vec3.mul(axis, Vec3.dot(axis, vector)));
    res.normalize();
    return res;
  }

  void applyQuat2Matrix(Quat q){
    // instead of transforming q into a matrix and applying it...

    float[] aa = q.getValue();
    rotate(aa[0], aa[1], aa[2], aa[3]);
  }
}

static class Vec3{
  float x, y, z;

  Vec3(){
  }

  Vec3(float x, float y, float z){
    this.x = x;
    this.y = y;
    this.z = z;
  }

  void normalize(){
    float length = length();
    x /= length;
    y /= length;
    z /= length;
  }

  float length(){
    return (float) Math.sqrt(x * x + y * y + z * z);
  }

  static Vec3 cross(Vec3 v1, Vec3 v2){
    Vec3 res = new Vec3();
    res.x = v1.y * v2.z - v1.z * v2.y;
    res.y = v1.z * v2.x - v1.x * v2.z;
    res.z = v1.x * v2.y - v1.y * v2.x;
    return res;
  }

  static float dot(Vec3 v1, Vec3 v2){
    return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
  }
  
  static Vec3 mul(Vec3 v, float d){
    Vec3 res = new Vec3();
    res.x = v.x * d;
    res.y = v.y * d;
    res.z = v.z * d;
    return res;
  }

  void sub(Vec3 v1, Vec3 v2){
    x = v1.x - v2.x;
    y = v1.y - v2.y;
    z = v1.z - v2.z;
  }
}

static class Quat{
  float w, x, y, z;

  Quat(){
    reset();
  }

  Quat(float w, float x, float y, float z){
    this.w = w;
    this.x = x;
    this.y = y;
    this.z = z;
  }

  void reset(){
    w = 1.0f;
    x = 0.0f;
    y = 0.0f;
    z = 0.0f;
  }

  void set(float w, Vec3 v){
    this.w = w;
    x = v.x;
    y = v.y;
    z = v.z;
  }

  void set(Quat q){
    w = q.w;
    x = q.x;
    y = q.y;
    z = q.z;
  }

  static Quat mul(Quat q1, Quat q2){
    Quat res = new Quat();
    res.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;
    res.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
    res.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z;
    res.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x;
    return res;
  }
  
  float[] getValue(){
    // transforming this quat into an angle and an axis vector...

    float[] res = new float[4];

    float sa = (float) Math.sqrt(1.0f - w * w);
    if (sa < EPSILON){
      sa = 1.0f;
    }

    res[0] = (float) Math.acos(w) * 2.0f;
    res[1] = x / sa;
    res[2] = y / sa;
    res[3] = z / sa;
    return res;
  }
}

跟踪浮动误差范围以返回相同的度数 arcball.rollforward()

  void rollforward(float radians2turn) { 
    rotatebywithincludedfloaterror = rotatebywithincludedfloaterror + (-1 * (((sin(radians2turn) * radius))/2));
    if(degreeW_count >= 360) {
      arcball.rollback(rotatebywithincludedfloaterror);
      degreeW_count = 0;
      rotatebywithincludedfloaterror = 0;
    }
    rollortilt(0, -1 * (((sin(radians2turn) * radius))/2)); 
    degreeW_count = degreeW_count + 1; // need to edit this later to work with rotations other then 1 degree
  }
java 进程 浮点精度 pi 有理数

评论

0赞 Andy Turner 1/11/2021
如果使用 而不是 (如 )。考虑到你所做的三角操作,无论如何它都会扩大到两倍。doublefloatvoid rollforward(double radians2turn) {
0赞 cubesareneat 1/11/2021
我想我需要一个更数学的修复,因为这只会使错误变小,而不是消除它
0赞 Andy Turner 1/11/2021
是的。这就是浮点兽的本质。数值误差基本上总是存在的,所以它们会累积起来。
0赞 cubesareneat 1/12/2021
如何跟踪累积误差,以便它可以以相同的误差幅度重置,假设它旋转 359.9 度,然后通过回滚 359.9 度来重置
0赞 Andy Turner 1/12/2021
您也许能够比值更准确地表示错误,但您仍然受到用于存储错误的事物的精度的限制。

答:

0赞 cubesareneat 1/12/2021 #1

在问题中使用我的想法来重置每 2*PI

  if(keys[w]) { 
    arcball.rollforward(PI/180);
    degreeW_count = degreeW_count + 1;
  }

  if(degreeW_count == 360) {
    arcball = new Arcball(width/2, height/2, 100); // setset to original arcball at 0 degrees
    degreeW_count = 0;
  }

在 Arcball 中

  void rollforward(float degrees2turn) { 
    rollortilt(0, -1 * (((sin(degrees2turn) * radius))/2));  // one degree forward 180/PI
  }

这完全规避了使用无理数和周期函数的任何数据类型都会累积的任何舍入误差!