提问人:Ricardo Reyes 提问时间:9/20/2008 最后编辑:Mateen UlhaqRicardo Reyes 更新时间:9/10/2023 访问量:1065604
如何生成列表的所有排列?
How do I generate all permutations of a list?
问:
如何生成列表的所有排列?例如:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
答:
此解决方案实现了一个生成器,以避免将所有排列保留在内存上:
def permutations (orig_list):
if not isinstance(orig_list, list):
orig_list = list(orig_list)
yield orig_list
if len(orig_list) == 1:
return
for n in sorted(orig_list):
new_list = orig_list[:]
pos = new_list.index(n)
del(new_list[pos])
new_list.insert(0, n)
for resto in permutations(new_list[1:]):
if new_list[:1] + resto <> orig_list:
yield new_list[:1] + resto
使用标准库中的 itertools.permutations
:
import itertools
list(itertools.permutations([1, 2, 3]))
从这里改编下来的是如何实现的演示:itertools.permutations
def permutations(elements):
if len(elements) <= 1:
yield elements
return
for perm in permutations(elements[1:]):
for i in range(len(elements)):
# nb elements[0:1] works in both string and list contexts
yield perm[:i] + elements[0:1] + perm[i:]
的文档中列出了几种替代方法。这是其中之一:itertools.permutations
def permutations(iterable, r=None):
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
# permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = range(n)
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
另一个,基于:itertools.product
def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)
评论
for i in range(len(elements))
for i in range(len(elements)+1)
elements[0:1]
len(elements)
len(elements)+1
对于 Python 2.6 及更高版本:
import itertools
itertools.permutations([1, 2, 3])
这将作为生成器返回。用于作为列表返回。list(permutations(xs))
评论
r
itertools.permutations([1,2,3], r=2)
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]
以下代码是给定列表的就地排列,作为生成器实现。由于它只返回对列表的引用,因此不应在生成器外部修改列表。 该解决方案是非递归的,因此使用低内存。也可以很好地处理输入列表中元素的多个副本。
def permute_in_place(a):
a.sort()
yield list(a)
if len(a) <= 1:
return
first = 0
last = len(a)
while 1:
i = last - 1
while 1:
i = i - 1
if a[i] < a[i+1]:
j = last - 1
while not (a[i] < a[j]):
j = j - 1
a[i], a[j] = a[j], a[i] # swap the values
r = a[i+1:last]
r.reverse()
a[i+1:last] = r
yield list(a)
break
if i == first:
a.reverse()
return
if __name__ == '__main__':
for n in range(5):
for a in permute_in_place(range(1, n+1)):
print a
print
for a in permute_in_place([0, 0, 1, 1, 1]):
print a
print
一、导入:itertools
import itertools
排列(顺序很重要):
print(list(itertools.permutations([1,2,3,4], 2)))
[(1, 2), (1, 3), (1, 4),
(2, 1), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 4),
(4, 1), (4, 2), (4, 3)]
组合(顺序无关紧要):
print(list(itertools.combinations('123', 2)))
[('1', '2'), ('1', '3'), ('2', '3')]
笛卡尔积(具有多个可迭代对象):
print(list(itertools.product([1,2,3], [4,5,6])))
[(1, 4), (1, 5), (1, 6),
(2, 4), (2, 5), (2, 6),
(3, 4), (3, 5), (3, 6)]
笛卡尔积(具有一个可迭代和自身):
print(list(itertools.product([1,2], repeat=3)))
[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]
评论
在我看来,一个非常明显的方式也可能是:
def permutList(l):
if not l:
return [[]]
res = []
for e in l:
temp = l[:]
temp.remove(e)
res.extend([[e] + r for r in permutList(temp)])
return res
list2Perm = [1, 2.0, 'three']
listPerm = [[a, b, c]
for a in list2Perm
for b in list2Perm
for c in list2Perm
if ( a != b and b != c and a != c )
]
print listPerm
输出:
[
[1, 2.0, 'three'],
[1, 'three', 2.0],
[2.0, 1, 'three'],
[2.0, 'three', 1],
['three', 1, 2.0],
['three', 2.0, 1]
]
评论
def permutations(head, tail=''):
if len(head) == 0:
print(tail)
else:
for i in range(len(head)):
permutations(head[:i] + head[i+1:], tail + head[i])
称为:
permutations('abc')
评论
perms=[]
print
return perms
人们确实可以遍历每个排列的第一个元素,就像 tzwenn 的答案一样。但是,以这种方式编写此解决方案会更有效:
def all_perms(elements):
if len(elements) <= 1:
yield elements # Only permutation possible = no permutation
else:
# Iteration over the first element in the result permutation:
for (index, first_elmt) in enumerate(elements):
other_elmts = elements[:index]+elements[index+1:]
for permutation in all_perms(other_elmts):
yield [first_elmt] + permutation
这个解决方案的速度快了大约 30%,这显然要归功于以 而不是 结尾的递归。
它的内存效率也更高,因为它使用生成器函数(通过),就像在 Riccardo Reyes 的解决方案中一样。len(elements) <= 1
0
yield
#!/usr/bin/env python
def perm(a, k=0):
if k == len(a):
print a
else:
for i in xrange(k, len(a)):
a[k], a[i] = a[i] ,a[k]
perm(a, k+1)
a[k], a[i] = a[i], a[k]
perm([1,2,3])
输出:
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 2, 1]
[3, 1, 2]
当我交换列表的内容时,它需要一个可变的序列类型作为输入。例如 会起作用,但不会起作用,因为您无法更改字符串。perm(list("ball"))
perm("ball")
这个 Python 实现的灵感来自于 Horowitz、Sahni 和 Rajasekeran 在《计算机算法》一书中介绍的算法。
评论
请注意,此算法具有时间复杂度,其中 是输入列表的长度n factorial
n
在运行中打印结果:
global result
result = []
def permutation(li):
if li == [] or li == None:
return
if len(li) == 1:
result.append(li[0])
print result
result.pop()
return
for i in range(0,len(li)):
result.append(li[i])
permutation(li[:i] + li[i+1:])
result.pop()
例:
permutation([1,2,3])
输出:
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
from __future__ import print_function
def perm(n):
p = []
for i in range(0,n+1):
p.append(i)
while True:
for i in range(1,n+1):
print(p[i], end=' ')
print("")
i = n - 1
found = 0
while (not found and i>0):
if p[i]<p[i+1]:
found = 1
else:
i = i - 1
k = n
while p[i]>p[k]:
k = k - 1
aux = p[i]
p[i] = p[k]
p[k] = aux
for j in range(1,(n-i)/2+1):
aux = p[i+j]
p[i+j] = p[n-j+1]
p[n-j+1] = aux
if not found:
break
perm(5)
在功能风格中
def addperm(x,l):
return [ l[0:i] + [x] + l[i:] for i in range(len(l)+1) ]
def perm(l):
if len(l) == 0:
return [[]]
return [x for y in perm(l[1:]) for x in addperm(l[0],y) ]
print perm([ i for i in range(3)])
结果:
[[0, 1, 2], [1, 0, 2], [1, 2, 0], [0, 2, 1], [2, 0, 1], [2, 1, 0]]
这是一种算法,它可以在列表上工作,而无需创建新的中间列表,类似于 https://stackoverflow.com/a/108651/184528 处 Ber 的解决方案。
def permute(xs, low=0):
if low + 1 >= len(xs):
yield xs
else:
for p in permute(xs, low + 1):
yield p
for i in range(low + 1, len(xs)):
xs[low], xs[i] = xs[i], xs[low]
for p in permute(xs, low + 1):
yield p
xs[low], xs[i] = xs[i], xs[low]
for p in permute([1, 2, 3, 4]):
print p
您可以在此处亲自尝试代码:http://repl.it/J9v
我使用了一种基于阶乘数系统的算法 - 对于长度为 n 的列表,您可以逐项组合每个排列,从每个阶段留下的项中进行选择。第一项有 n 个选项,第二个项目有 n-1 个选项,最后一个项目只有一个选项,因此您可以使用阶乘数系统中数字的数字作为索引。这样,数字 0 到 n!-1 对应于字典顺序上所有可能的排列。
from math import factorial
def permutations(l):
permutations=[]
length=len(l)
for x in xrange(factorial(length)):
available=list(l)
newPermutation=[]
for radix in xrange(length, 0, -1):
placeValue=factorial(radix-1)
index=x/placeValue
newPermutation.append(available.pop(index))
x-=index*placeValue
permutations.append(newPermutation)
return permutations
permutations(range(3))
输出:
[[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
这种方法是非递归的,但它在我的计算机上速度稍慢,并且 xrange 在 n!太大了,无法转换为 C 长整数(对我来说 n=13)。当我需要它时,它就足够了,但它没有 itertools.permutations 的远景。
评论
这是受使用列表推导式的 Haskell 实现的启发:
def permutation(list):
if len(list) == 0:
return [[]]
else:
return [[x] + ys for x in list for ys in permutation(delete(list, x))]
def delete(list, item):
lc = list[:]
lc.remove(item)
return lc
递归之美:
>>> import copy
>>> def perm(prefix,rest):
... for e in rest:
... new_rest=copy.copy(rest)
... new_prefix=copy.copy(prefix)
... new_prefix.append(e)
... new_rest.remove(e)
... if len(new_rest) == 0:
... print new_prefix + new_rest
... continue
... perm(new_prefix,new_rest)
...
>>> perm([],['a','b','c','d'])
['a', 'b', 'c', 'd']
['a', 'b', 'd', 'c']
['a', 'c', 'b', 'd']
['a', 'c', 'd', 'b']
['a', 'd', 'b', 'c']
['a', 'd', 'c', 'b']
['b', 'a', 'c', 'd']
['b', 'a', 'd', 'c']
['b', 'c', 'a', 'd']
['b', 'c', 'd', 'a']
['b', 'd', 'a', 'c']
['b', 'd', 'c', 'a']
['c', 'a', 'b', 'd']
['c', 'a', 'd', 'b']
['c', 'b', 'a', 'd']
['c', 'b', 'd', 'a']
['c', 'd', 'a', 'b']
['c', 'd', 'b', 'a']
['d', 'a', 'b', 'c']
['d', 'a', 'c', 'b']
['d', 'b', 'a', 'c']
['d', 'b', 'c', 'a']
['d', 'c', 'a', 'b']
['d', 'c', 'b', 'a']
该算法是最有效的算法,它避免了递归调用中的数组传递和操作,适用于 Python 2、3:
def permute(items):
length = len(items)
def inner(ix=[]):
do_yield = len(ix) == length - 1
for i in range(0, length):
if i in ix: #avoid duplicates
continue
if do_yield:
yield tuple([items[y] for y in ix + [i]])
else:
for p in inner(ix + [i]):
yield p
return inner()
用法:
for p in permute((1,2,3)):
print(p)
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)
def pzip(c, seq):
result = []
for item in seq:
for i in range(len(item)+1):
result.append(item[i:]+c+item[:i])
return result
def perm(line):
seq = [c for c in line]
if len(seq) <=1 :
return seq
else:
return pzip(seq[0], perm(seq[1:]))
为了提高性能,一个受 Knuth 启发的 numpy 解决方案,(p22):
from numpy import empty, uint8
from math import factorial
def perms(n):
f = 1
p = empty((2*n-1, factorial(n)), uint8)
for i in range(n):
p[i, :f] = i
p[i+1:2*i+1, :f] = p[:i, :f] # constitution de blocs
for j in range(i):
p[:i+1, f*(j+1):f*(j+2)] = p[j+1:j+i+2, :f] # copie de blocs
f = f*(i+1)
return p[:n, :]
复制大块内存可以节省时间 -
它比以下设备快 20 倍:list(itertools.permutations(range(n))
In [1]: %timeit -n10 list(permutations(range(10)))
10 loops, best of 3: 815 ms per loop
In [2]: %timeit -n100 perms(10)
100 loops, best of 3: 40 ms per loop
对于 Python,我们可以使用 itertools 并导入排列和组合来解决您的问题
from itertools import product, permutations
A = ([1,2,3])
print (list(permutations(sorted(A),2)))
生成所有可能的排列
我正在使用python3.4:
def calcperm(arr, size):
result = set([()])
for dummy_idx in range(size):
temp = set()
for dummy_lst in result:
for dummy_outcome in arr:
if dummy_outcome not in dummy_lst:
new_seq = list(dummy_lst)
new_seq.append(dummy_outcome)
temp.add(tuple(new_seq))
result = temp
return result
测试用例:
lst = [1, 2, 3, 4]
#lst = ["yellow", "magenta", "white", "blue"]
seq = 2
final = calcperm(lst, seq)
print(len(final))
print(final)
评论
def calcperm(arr, size, dupes):
dupes
我看到这些递归函数内部发生了很多迭代,不完全是纯粹的递归......
因此,对于那些甚至不能遵守单个循环的人来说,这里有一个粗略的、完全不必要的全递归解决方案
def all_insert(x, e, i=0):
return [x[0:i]+[e]+x[i:]] + all_insert(x,e,i+1) if i<len(x)+1 else []
def for_each(X, e):
return all_insert(X[0], e) + for_each(X[1:],e) if X else []
def permute(x):
return [x] if len(x) < 2 else for_each( permute(x[1:]) , x[0])
perms = permute([1,2,3])
另一种解决方案:
def permutation(flag, k =1 ):
N = len(flag)
for i in xrange(0, N):
if flag[i] != 0:
continue
flag[i] = k
if k == N:
print flag
permutation(flag, k+1)
flag[i] = 0
permutation([0, 0, 0])
评论
range()
我的 Python 解决方案:
def permutes(input,offset):
if( len(input) == offset ):
return [''.join(input)]
result=[]
for i in range( offset, len(input) ):
input[offset], input[i] = input[i], input[offset]
result = result + permutes(input,offset+1)
input[offset], input[i] = input[i], input[offset]
return result
# input is a "string"
# return value is a list of strings
def permutations(input):
return permutes( list(input), 0 )
# Main Program
print( permutations("wxyz") )
def permutation(word, first_char=None):
if word == None or len(word) == 0: return []
if len(word) == 1: return [word]
result = []
first_char = word[0]
for sub_word in permutation(word[1:], first_char):
result += insert(first_char, sub_word)
return sorted(result)
def insert(ch, sub_word):
arr = [ch + sub_word]
for i in range(len(sub_word)):
arr.append(sub_word[i:] + ch + sub_word[:i])
return arr
assert permutation(None) == []
assert permutation('') == []
assert permutation('1') == ['1']
assert permutation('12') == ['12', '21']
print permutation('abc')
输出: ['abc', 'acb', 'bac', 'bca', 'cab', 'cba']
为了节省人们可能花费数小时的搜索和实验时间,以下是 Python 中的非递归置换解决方案,它也适用于 Numba(截至 v. 0.41):
@numba.njit()
def permutations(A, k):
r = [[i for i in range(0)]]
for i in range(k):
r = [[a] + b for a in A for b in r if (a in b)==False]
return r
permutations([1,2,3],3)
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
要给人留下有关性能的印象:
%timeit permutations(np.arange(5),5)
243 µs ± 11.1 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
time: 406 ms
%timeit list(itertools.permutations(np.arange(5),5))
15.9 µs ± 8.61 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
time: 12.9 s
因此,仅当您必须从 njitted 函数调用它时才使用此版本,否则更喜欢 itertools 实现。
用Counter
from collections import Counter
def permutations(nums):
ans = [[]]
cache = Counter(nums)
for idx, x in enumerate(nums):
result = []
for items in ans:
cache1 = Counter(items)
for id, n in enumerate(nums):
if cache[n] != cache1[n] and items + [n] not in result:
result.append(items + [n])
ans = result
return ans
permutations([1, 2, 2])
> [[1, 2, 2], [2, 1, 2], [2, 2, 1]]
另一种方法(没有库)
def permutation(input):
if len(input) == 1:
return input if isinstance(input, list) else [input]
result = []
for i in range(len(input)):
first = input[i]
rest = input[:i] + input[i + 1:]
rest_permutation = permutation(rest)
for p in rest_permutation:
result.append(first + p)
return result
输入可以是字符串或列表
print(permutation('abcd'))
print(permutation(['a', 'b', 'c', 'd']))
评论
[1, 2, 3]
[6, 6, 6, 6, 6, 6]
print(permutation(['1','2','3']))
免责声明:包作者的无耻插件。:)
trotter 包与大多数实现的不同之处在于,它生成的伪列表实际上并不包含排列,而是按顺序描述排列和相应位置之间的映射,从而可以使用非常大的排列“列表”,如本演示所示,该演示在伪列表中执行非常即时的操作和查找,该伪列表“包含”字母表中字母的所有排列, 不使用比典型网页更多的内存或处理。
无论如何,要生成排列列表,我们可以执行以下操作。
import trotter
my_permutations = trotter.Permutations(3, [1, 2, 3])
print(my_permutations)
for p in my_permutations:
print(p)
输出:
A pseudo-list containing 6 3-permutations of [1, 2, 3]. [1, 2, 3] [1, 3, 2] [3, 1, 2] [3, 2, 1] [2, 3, 1] [2, 1, 3]
评论
常规实现(无产量 - 将在内存中完成所有操作):
def getPermutations(array):
if len(array) == 1:
return [array]
permutations = []
for i in range(len(array)):
# get all perm's of subarray w/o current item
perms = getPermutations(array[:i] + array[i+1:])
for p in perms:
permutations.append([array[i], *p])
return permutations
良率实现:
def getPermutations(array):
if len(array) == 1:
yield array
else:
for i in range(len(array)):
perms = getPermutations(array[:i] + array[i+1:])
for p in perms:
yield [array[i], *p]
基本思想是遍历数组中第一个位置的所有元素,然后在第二个位置遍历所有其他元素,而没有第一个选定的元素,依此类推。您可以使用递归来做到这一点,其中停止条件是获取包含 1 个元素的数组 - 在这种情况下,您将返回该数组。
评论
perms = getPermutations(array[:i] + array[i+1:])
numpy
getPermutations(np.array([1, 2, 3]))
array
numba
numpy
def permuteArray (arr):
arraySize = len(arr)
permutedList = []
if arraySize == 1:
return [arr]
i = 0
for item in arr:
for elem in permuteArray(arr[:i] + arr[i + 1:]):
permutedList.append([item] + elem)
i = i + 1
return permutedList
我打算在新系列中不穷尽所有可能性,以使其具有某种独特性。
无论如何,我们可以使用sympy库,也支持多集排列
import sympy
from sympy.utilities.iterables import multiset_permutations
t = [1,2,3]
p = list(multiset_permutations(t))
print(p)
# [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
答案的灵感来自获取 numpy 数组的所有排列
from typing import List
import time, random
def measure_time(func):
def wrapper_time(*args, **kwargs):
start_time = time.perf_counter()
res = func(*args, **kwargs)
end_time = time.perf_counter()
return res, end_time - start_time
return wrapper_time
class Solution:
def permute(self, nums: List[int], method: int = 1) -> List[List[int]]:
perms = []
perm = []
if method == 1:
_, time_perm = self._permute_recur(nums, 0, len(nums) - 1, perms)
elif method == 2:
_, time_perm = self._permute_recur_agian(nums, perm, perms)
print(perm)
return perms, time_perm
@measure_time
def _permute_recur(self, nums: List[int], l: int, r: int, perms: List[List[int]]):
# base case
if l == r:
perms.append(nums.copy())
for i in range(l, r + 1):
nums[l], nums[i] = nums[i], nums[l]
self._permute_recur(nums, l + 1, r , perms)
nums[l], nums[i] = nums[i], nums[l]
@measure_time
def _permute_recur_agian(self, nums: List[int], perm: List[int], perms_list: List[List[int]]):
"""
The idea is similar to nestedForLoops visualized as a recursion tree.
"""
if nums:
for i in range(len(nums)):
# perm.append(nums[i]) mistake, perm will be filled with all nums's elements.
# Method1 perm_copy = copy.deepcopy(perm)
# Method2 add in the parameter list using + (not in place)
# caveat: list.append is in-place , which is useful for operating on global element perms_list
# Note that:
# perms_list pass by reference. shallow copy
# perm + [nums[i]] pass by value instead of reference.
self._permute_recur_agian(nums[:i] + nums[i+1:], perm + [nums[i]], perms_list)
else:
# Arrive at the last loop, i.e. leaf of the recursion tree.
perms_list.append(perm)
if __name__ == "__main__":
array = [random.randint(-10, 10) for _ in range(3)]
sol = Solution()
# perms, time_perm = sol.permute(array, 1)
perms2, time_perm2 = sol.permute(array, 2)
print(perms2)
# print(perms, perms2)
# print(time_perm, time_perm2)
```
评论
如果有人喜欢这个丑陋的单行字(虽然仅适用于字符串):
def p(a):
return a if len(a) == 1 else [[a[i], *j] for i in range(len(a)) for j in p(a[:i] + a[i + 1:])]
这是初始排序后生成排列的渐近最优方式 O(n*n!)。
有 n!最多排列,并且 hasNextPermutation(..) 以 O(n) 时间复杂度运行
分 3 个步骤,
- 求最大 j,使得 a[j] 可以增加
- 增加最小可行量 a[j]
- 找到扩展新 a[0..j] 的词典最少方法
'''
Lexicographic permutation generation
consider example array state of [1,5,6,4,3,2] for sorted [1,2,3,4,5,6]
after 56432(treat as number) ->nothing larger than 6432(using 6,4,3,2) beginning with 5
so 6 is next larger and 2345(least using numbers other than 6)
so [1, 6,2,3,4,5]
'''
def hasNextPermutation(array, len):
' Base Condition '
if(len ==1):
return False
'''
Set j = last-2 and find first j such that a[j] < a[j+1]
If no such j(j==-1) then we have visited all permutations
after this step a[j+1]>=..>=a[len-1] and a[j]<a[j+1]
a[j]=5 or j=1, 6>5>4>3>2
'''
j = len -2
while (j >= 0 and array[j] >= array[j + 1]):
j= j-1
if(j==-1):
return False
# print(f"After step 2 for j {j} {array}")
'''
decrease l (from n-1 to j) repeatedly until a[j]<a[l]
Then swap a[j], a[l]
a[l] is the smallest element > a[j] that can follow a[l]...a[j-1] in permutation
before swap we have a[j+1]>=..>=a[l-1]>=a[l]>a[j]>=a[l+1]>=..>=a[len-1]
after swap -> a[j+1]>=..>=a[l-1]>=a[j]>a[l]>=a[l+1]>=..>=a[len-1]
a[l]=6 or l=2, j=1 just before swap [1, 5, 6, 4, 3, 2]
after swap [1, 6, 5, 4, 3, 2] a[l]=5, a[j]=6
'''
l = len -1
while(array[j] >= array[l]):
l = l-1
# print(f"After step 3 for l={l}, j={j} before swap {array}")
array[j], array[l] = array[l], array[j]
# print(f"After step 3 for l={l} j={j} after swap {array}")
'''
Reverse a[j+1...len-1](both inclusive)
after reversing [1, 6, 2, 3, 4, 5]
'''
array[j+1:len] = reversed(array[j+1:len])
# print(f"After step 4 reversing {array}")
return True
array = [1,2,4,4,5]
array.sort()
len = len(array)
count =1
print(array)
'''
The algorithm visits every permutation in lexicographic order
generating one by one
'''
while(hasNextPermutation(array, len)):
print(array)
count = count +1
# The number of permutations will be n! if no duplicates are present, else less than that
# [1,4,3,3,2] -> 5!/2!=60
print(f"Number of permutations: {count}")
评论
如果不想使用内置方法,例如:
import itertools
list(itertools.permutations([1, 2, 3]))
您可以自己实现 permute 函数
from collections.abc import Iterable
def permute(iterable: Iterable[str]) -> set[str]:
perms = set()
if len(iterable) == 1:
return {*iterable}
for index, char in enumerate(iterable):
perms.update([char + perm for perm in permute(iterable[:index] + iterable[index + 1:])])
return perms
if __name__ == '__main__':
print(permute('abc'))
# {'bca', 'abc', 'cab', 'acb', 'cba', 'bac'}
print(permute(['1', '2', '3']))
# {'123', '312', '132', '321', '213', '231'}
def permutate(l):
for i, x in enumerate(l):
for y in l[i + 1:]:
yield x, y
if __name__ == '__main__':
print(list(permutate(list('abcd'))))
print(list(permutate([1, 2, 3, 4])))
#[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
#[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
评论
用递归求解,遍历元素,取第 i 个元素,然后问自己:“其余项目的排列是什么”,直到没有更多的元素留下。
我在这里解释了解决方案:https://www.youtube.com/watch?v=_7GE7psS2b4
class Solution:
def permute(self,nums:List[int])->List[List[int]]:
res=[]
def dfs(nums,path):
if len(nums)==0:
res.append(path)
for i in range(len(nums)):
dfs(nums[:i]+nums[i+1:],path+[nums[i]])
dfs(nums,[])
return res
如果用户希望将所有排列保留在列表中,可以使用以下代码:
def get_permutations(nums, p_list=[], temp_items=[]):
if not nums:
return
elif len(nums) == 1:
new_items = temp_items+[nums[0]]
p_list.append(new_items)
return
else:
for i in range(len(nums)):
temp_nums = nums[:i]+nums[i+1:]
new_temp_items = temp_items + [nums[i]]
get_permutations(temp_nums, p_list, new_temp_items)
nums = [1,2,3]
p_list = []
get_permutations(nums, p_list)
或者,您也可以旋转
def perm_rotate(elements):
if len(elements) <= 1:
yield elements
return
for _ in range(len(elements)):
for perm in perm_rotate(elements[1:]):
yield [elements[0]] + perm
elements = rotate(elements)
def rotate(numbers):
return [numbers[-1]] + numbers[: len(numbers)-1]
评论