提问人:Hack-R 提问时间:7/1/2017 最后编辑:Hack-R 更新时间:11/11/2017 访问量:1631
Windows 上的 H2O XGBoost:错误:java.lang.UnsatisfiedLinkError:ml.dmlc.xgboost4j.java.XGBoostJNI.XGDMatrixCreateFromCSREx([J[I[FI[J)I
H2O XGBoost on Windows: Error: java.lang.UnsatisfiedLinkError: ml.dmlc.xgboost4j.java.XGBoostJNI.XGDMatrixCreateFromCSREx([J[I[FI[J)I
问:
当我尝试通过 H2O 3.12.01 在 Windows 7 和 Windows Server 2008R2 上的 R 中运行 XGboost 时,出现以下错误:h2o.xgboost()
错误:java.lang.UnsatisfiedLinkError: ml.dmlc.xgboost4j.java.XGBoostJNI.XGDMatrixCreateFromCSREx([J[I[FI[J)I
下面是一个可重现的示例:
library(h2o)
h2o.init(nthreads = -1)
h2o.no_progress() # Don't show progress bars in RMarkdown output
# Import a sample binary outcome train/test set into H2O
train <- h2o.importFile("https://s3.amazonaws.com/erin-data/higgs/higgs_train_10k.csv")
test <- h2o.importFile("https://s3.amazonaws.com/erin-data/higgs/higgs_test_5k.csv")
# Identify predictors and response
y <- "response"
x <- setdiff(names(train), y)
# For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])
# Number of CV folds (to generate level-one data for stacking)
nfolds <- 5
# Train & Cross-validate a (shallow) XGB-GBM
my_xgb1 <- h2o.xgboost(x = x,
y = y,
training_frame = train,
distribution = "bernoulli",
ntrees = 50,
max_depth = 3,
min_rows = 2,
learn_rate = 0.2,
nfolds = nfolds,
fold_assignment = "Modulo",
keep_cross_validation_predictions = TRUE,
seed = 1)
R version 3.4.0 Patched (2017-05-19 r72713) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows Server 2008 R2 x64 (build 7601) Service Pack 1 Matrix products: default locale: [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252 [4] LC_NUMERIC=C LC_TIME=English_United States.1252 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] h2o_3.12.0.1 loaded via a namespace (and not attached): [1] compiler_3.4.0 tools_3.4.0 RCurl_1.95-4.8 jsonlite_1.5 bitops_1.0-6
3.12.01 是 h2o.ai 首页链接的最新开发版本,我在 3.10 中没有找到此功能后升级到了这个版本。但是,@MarcoSandri 的评论表明他们的 Amazon AWS 上有更新的开发版本 (3.13),因此下载了它并相应地升级了集群和 R 包。
从 3.12 到 3.13 的升级似乎很顺利,直到我尝试使用该功能。然后它抛出了一个不同的错误:h2o.xgboost()
Error in .h2o.doSafeREST(h2oRestApiVersion = h2oRestApiVersion, urlSuffix = page, :
ERROR MESSAGE: -1 Error in fetch(key) : lazy-load database 'E:/Program Files/R/R-3.4.0patched/library/h2o/help/h2o.rdb' is corrupt
答:
1赞
Navdeep Gill
8/17/2017
#1
H2O-3 XGBoost 不支持 Windows。作为参考,以下是 H2O-3 XGBoost 支持的操作系统列表:
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html#limitations
评论
0赞
PabloDK
10/25/2019
我今天收到同样的错误 - 在 Window 10 桌面上:github.com/dmlc/xgboost/issues/4983
评论
sessionInfo()
java -version
h2o.xgboost