提问人:Skyma 提问时间:11/9/2023 最后编辑:Skyma 更新时间:11/10/2023 访问量:58
R Survival 分析了理解我从数据生成的图形的麻烦
R Survival analys trouble to understand the graph I generate from my data
问:
在图中,数据似乎分为两个流,每个流似乎都反映了另一个流,我无法理解结果或为什么会发生这种情况。
你好 第一篇文章在这里。
我收集了一个数据文件,其中包含员工、他们的部门以及他们是否辞职的开始日期和结束日期。我的目标是为我的工作场所找到一个生存模式。然而,至少可以说,这张图似乎很奇怪。我正在寻找有关为什么会发生这种情况以及图表告诉我的内容以及我是否犯了任何错误的答案。代码有效,但结果看起来很奇怪。在生存包中的肺部数据集上练习,以重复我的知识。我期待一些看起来更像肺图的东西。
Dag 表示员工在今天之前一直工作的天数(如果他们仍在工作)或他们辞职的日期。 S2 为 0 表示仍在工作,1 表示已退出。 Strata2 是公司的四个不同部门。
library(survival)
library(ggplot2)
library(ggfortify)
library(Hmisc)
SURmodell<-survfit(Surv(Dag, S2) ~Strata2, data = SUR231109)
autoplot(SURmodell)
数据
structure(list(ID = structure(c(2L, 4L, 10L, 18L, 19L, 20L, 28L,
29L, 31L, 32L, 34L, 36L, 38L, 41L, 42L, 43L, 45L, 46L, 47L, 48L,
52L, 53L, 55L, 56L, 57L, 58L, 59L, 60L, 64L, 72L, 73L, 77L, 78L,
79L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 98L, 99L, 100L,
101L, 102L, 103L, 104L, 105L, 106L, 107L, 109L, 121L, 125L, 157L,
158L, 159L, 160L, 161L, 162L, 163L, 165L, 166L, 167L, 168L, 169L,
170L, 171L, 189L, 195L, 196L, 198L, 199L, 233L, 234L, 235L, 237L,
238L, 239L, 244L, 252L, 253L, 254L, 255L, 256L, 257L, 259L, 260L,
261L, 262L, 263L, 264L, 265L, 266L, 267L, 268L, 270L, 271L, 272L,
273L, 274L, 288L, 289L, 290L, 297L, 298L, 299L, 300L, 301L, 303L,
304L, 305L, 306L, 307L, 308L, 309L, 310L, 311L, 312L, 314L, 315L,
316L, 317L, 318L, 319L, 320L, 321L, 322L, 323L, 324L, 326L, 327L,
328L, 329L, 330L, 331L, 332L, 333L, 334L, 335L, 350L, 351L, 352L,
353L, 354L, 355L, 356L, 358L, 359L, 360L, 361L, 362L, 363L, 364L,
365L, 366L, 367L, 369L, 370L, 371L, 372L, 373L, 374L, 375L, 383L,
384L, 385L, 386L, 387L, 388L, 389L, 391L, 392L, 393L, 394L, 395L,
396L, 397L, 398L, 399L, 400L, 402L, 403L, 404L, 405L, 406L, 407L,
408L, 409L, 410L, 424L, 425L, 426L, 434L, 436L, 437L, 438L, 439L,
440L, 441L, 442L, 443L, 444L, 445L, 446L, 447L, 448L, 449L, 450L,
451L, 452L, 453L, 454L, 455L, 456L, 461L, 462L, 463L, 464L, 465L,
466L, 467L, 468L, 469L, 475L, 476L, 477L, 478L, 479L, 480L, 488L,
75L, 86L, 97L, 108L, 119L, 130L, 141L, 153L, 164L, 175L, 186L,
197L, 208L, 219L, 230L, 236L, 240L, 247L, 258L, 269L, 275L, 276L,
277L, 283L, 291L, 302L, 313L, 325L, 336L, 337L, 338L, 346L, 357L,
368L, 550L, 557L, 559L, 561L, 562L, 566L, 569L, 571L, 575L, 579L,
61L, 62L, 63L, 80L, 81L, 82L, 83L, 84L, 85L, 110L, 111L, 112L,
113L, 126L, 127L, 128L, 129L, 131L, 132L, 133L, 134L, 135L, 136L,
137L, 138L, 139L, 140L, 142L, 143L, 144L, 145L, 146L, 147L, 148L,
149L, 172L, 173L, 174L, 176L, 177L, 178L, 179L, 180L, 181L, 182L,
190L, 200L, 201L, 202L, 207L, 209L, 210L, 211L, 216L, 379L, 390L,
401L, 411L, 421L, 427L, 428L, 435L, 581L, 3L, 6L, 11L, 16L, 24L,
65L, 66L, 67L, 68L, 69L, 74L, 87L, 88L, 114L, 115L, 116L, 117L,
122L, 150L, 151L, 154L, 155L, 156L, 183L, 184L, 187L, 191L, 192L,
193L, 203L, 204L, 205L, 206L, 212L, 213L, 214L, 215L, 241L, 242L,
243L, 245L, 278L, 279L, 280L, 281L, 282L, 284L, 285L, 286L, 287L,
292L, 294L, 339L, 340L, 341L, 342L, 343L, 344L, 345L, 347L, 348L,
349L, 376L, 377L, 378L, 380L, 381L, 382L, 412L, 413L, 414L, 429L,
430L, 431L, 432L, 433L, 458L, 459L, 460L, 471L, 482L, 483L, 485L,
486L, 487L, 492L, 493L, 497L, 498L, 499L, 500L, 501L, 503L, 504L,
506L, 507L, 508L, 509L, 510L, 511L, 517L, 518L, 519L, 520L, 521L,
522L, 523L, 524L, 525L, 526L, 527L, 528L, 529L, 530L, 533L, 534L,
539L, 540L, 1L, 152L, 246L, 457L, 470L, 473L, 481L, 489L, 490L,
491L, 496L, 33L, 37L, 39L, 70L, 71L, 76L, 118L, 120L, 123L, 124L,
185L, 188L, 194L, 217L, 218L, 220L, 221L, 222L, 223L, 224L, 225L,
226L, 227L, 228L, 229L, 231L, 232L, 248L, 249L, 250L, 251L, 293L,
295L, 296L, 415L, 416L, 417L, 418L, 419L, 420L, 422L, 423L, 472L,
474L, 484L, 494L, 495L, 502L, 505L, 512L, 513L, 514L, 515L, 516L,
531L, 532L, 535L, 536L, 537L, 538L, 541L, 542L, 543L, 544L, 545L,
546L, 547L, 548L, 549L, 551L, 552L, 553L, 554L, 555L, 556L, 558L,
560L, 563L, 564L, 565L, 567L, 568L, 570L, 572L, 573L, 574L, 576L,
577L, 578L, 580L, 582L, 583L, 584L, 585L, 586L, 5L, 7L, 8L, 9L,
12L, 13L, 14L, 15L, 17L, 21L, 22L, 23L, 25L, 26L, 27L, 30L, 35L,
40L, 44L, 49L, 50L, 51L, 54L), .Label = c("Emp1", "Emp10", "Emp100",
"Emp1000", "Emp1009", "Emp101", "Emp1010", "Emp1011", "Emp1012",
"Emp1013", "Emp102", "Emp1021", "Emp1027", "Emp1028", "Emp1029",
"Emp103", "Emp1030", "Emp1031", "Emp1032", "Emp1036", "Emp1037",
"Emp1038", "Emp1039", "Emp104", "Emp1040", "Emp1041", "Emp1042",
"Emp1043", "Emp1044", "Emp1047", "Emp1048", "Emp1049", "Emp105",
"Emp1050", "Emp1057", "Emp1058", "Emp106", "Emp1068", "Emp107",
"Emp1070", "Emp1072", "Emp1073", "Emp108", "Emp1085", "Emp109",
"Emp1090", "Emp1091", "Emp1093", "Emp1094", "Emp1095", "Emp1098",
"Emp11", "Emp110", "Emp1100", "Emp111", "Emp112", "Emp113", "Emp114",
"Emp115", "Emp116", "Emp117", "Emp118", "Emp119", "Emp12", "Emp120",
"Emp121", "Emp122", "Emp123", "Emp124", "Emp125", "Emp126", "Emp127",
"Emp128", "Emp129", "Emp13", "Emp130", "Emp131", "Emp132", "Emp133",
"Emp134", "Emp135", "Emp136", "Emp137", "Emp138", "Emp139", "Emp14",
"Emp140", "Emp141", "Emp142", "Emp143", "Emp144", "Emp145", "Emp146",
"Emp147", "Emp148", "Emp149", "Emp15", "Emp150", "Emp151", "Emp152",
"Emp153", "Emp154", "Emp155", "Emp156", "Emp157", "Emp158", "Emp159",
"Emp16", "Emp160", "Emp161", "Emp162", "Emp163", "Emp164", "Emp165",
"Emp166", "Emp167", "Emp168", "Emp169", "Emp17", "Emp170", "Emp171",
"Emp172", "Emp173", "Emp174", "Emp175", "Emp176", "Emp177", "Emp178",
"Emp179", "Emp18", "Emp180", "Emp181", "Emp182", "Emp183", "Emp184",
"Emp185", "Emp186", "Emp187", "Emp188", "Emp189", "Emp19", "Emp190",
"Emp191", "Emp192", "Emp193", "Emp194", "Emp195", "Emp196", "Emp197",
"Emp198", "Emp199", "Emp2", "Emp20", "Emp200", "Emp201", "Emp202",
"Emp203", "Emp204", "Emp205", "Emp206", "Emp207", "Emp208", "Emp209",
"Emp21", "Emp210", "Emp211", "Emp212", "Emp213", "Emp214", "Emp215",
"Emp216", "Emp217", "Emp218", "Emp219", "Emp22", "Emp220", "Emp221",
"Emp222", "Emp223", "Emp224", "Emp225", "Emp226", "Emp227", "Emp228",
"Emp229", "Emp23", "Emp230", "Emp231", "Emp232", "Emp233", "Emp234",
"Emp235", "Emp236", "Emp237", "Emp238", "Emp239", "Emp24", "Emp240",
"Emp241", "Emp242", "Emp243", "Emp244", "Emp245", "Emp246", "Emp247",
"Emp248", "Emp249", "Emp25", "Emp250", "Emp251", "Emp252", "Emp253",
"Emp254", "Emp255", "Emp256", "Emp257", "Emp258", "Emp259", "Emp26",
"Emp260", "Emp261", "Emp262", "Emp263", "Emp264", "Emp265", "Emp266",
"Emp267", "Emp268", "Emp269", "Emp27", "Emp270", "Emp271", "Emp272",
"Emp273", "Emp274", "Emp28", "Emp287", "Emp288", "Emp289", "Emp29",
"Emp293", "Emp294", "Emp295", "Emp296", "Emp299", "Emp3", "Emp30",
"Emp300", "Emp301", "Emp302", "Emp303", "Emp304", "Emp305", "Emp306",
"Emp307", "Emp308", "Emp309", "Emp31", "Emp310", "Emp311", "Emp312",
"Emp313", "Emp314", "Emp315", "Emp316", "Emp317", "Emp318", "Emp319",
"Emp32", "Emp320", "Emp321", "Emp322", "Emp323", "Emp324", "Emp33",
"Emp34", "Emp35", "Emp355", "Emp356", "Emp357", "Emp358", "Emp359",
"Emp36", "Emp360", "Emp361", "Emp362", "Emp363", "Emp364", "Emp366",
"Emp367", "Emp37", "Emp370", "Emp371", "Emp372", "Emp373", "Emp374",
"Emp375", "Emp376", "Emp377", "Emp378", "Emp379", "Emp38", "Emp380",
"Emp381", "Emp382", "Emp383", "Emp384", "Emp385", "Emp386", "Emp387",
"Emp388", "Emp389", "Emp39", "Emp390", "Emp391", "Emp392", "Emp393",
"Emp394", "Emp395", "Emp396", "Emp397", "Emp398", "Emp399", "Emp4",
"Emp40", "Emp400", "Emp401", "Emp402", "Emp403", "Emp404", "Emp405",
"Emp406", "Emp407", "Emp408", "Emp409", "Emp41", "Emp42", "Emp43",
"Emp433", "Emp434", "Emp435", "Emp436", "Emp437", "Emp438", "Emp439",
"Emp44", "Emp440", "Emp441", "Emp442", "Emp443", "Emp444", "Emp445",
"Emp446", "Emp447", "Emp448", "Emp449", "Emp45", "Emp450", "Emp451",
"Emp452", "Emp453", "Emp454", "Emp455", "Emp456", "Emp457", "Emp458",
"Emp459", "Emp46", "Emp460", "Emp461", "Emp462", "Emp463", "Emp464",
"Emp465", "Emp466", "Emp467", "Emp468", "Emp469", "Emp47", "Emp470",
"Emp471", "Emp472", "Emp473", "Emp474", "Emp475", "Emp476", "Emp477",
"Emp478", "Emp479", "Emp48", "Emp480", "Emp481", "Emp482", "Emp483",
"Emp484", "Emp485", "Emp486", "Emp487", "Emp488", "Emp489", "Emp49",
"Emp490", "Emp491", "Emp492", "Emp493", "Emp494", "Emp495", "Emp496",
"Emp497", "Emp5", "Emp50", "Emp501", "Emp502", "Emp503", "Emp504",
"Emp505", "Emp506", "Emp507", "Emp508", "Emp509", "Emp51", "Emp510",
"Emp511", "Emp512", "Emp513", "Emp514", "Emp52", "Emp53", "Emp534",
"Emp535", "Emp536", "Emp537", "Emp538", "Emp539", "Emp54", "Emp540",
"Emp541", "Emp542", "Emp543", "Emp544", "Emp545", "Emp546", "Emp547",
"Emp548", "Emp549", "Emp55", "Emp550", "Emp551", "Emp552", "Emp553",
"Emp554", "Emp555", "Emp556", "Emp557", "Emp558", "Emp559", "Emp56",
"Emp566", "Emp567", "Emp568", "Emp57", "Emp570", "Emp571", "Emp572",
"Emp573", "Emp574", "Emp575", "Emp576", "Emp577", "Emp58", "Emp587",
"Emp588", "Emp59", "Emp590", "Emp591", "Emp592", "Emp593", "Emp594",
"Emp595", "Emp6", "Emp60", "Emp600", "Emp601", "Emp602", "Emp603",
"Emp606", "Emp607", "Emp608", "Emp61", "Emp62", "Emp63", "Emp634",
"Emp635", "Emp636", "Emp637", "Emp64", "Emp649", "Emp650", "Emp651",
"Emp652", "Emp653", "Emp654", "Emp677", "Emp678", "Emp681", "Emp683",
"Emp729", "Emp730", "Emp731", "Emp732", "Emp733", "Emp734", "Emp735",
"Emp736", "Emp737", "Emp738", "Emp749", "Emp750", "Emp751", "Emp752",
"Emp753", "Emp754", "Emp755", "Emp756", "Emp757", "Emp758", "Emp759",
"Emp761", "Emp763", "Emp765", "Emp766", "Emp767", "Emp781", "Emp782",
"Emp783", "Emp784", "Emp785", "Emp786", "Emp788", "Emp789", "Emp790",
"Emp791", "Emp792", "Emp793", "Emp800", "Emp814", "Emp815", "Emp824",
"Emp863", "Emp89", "Emp894", "Emp895", "Emp896", "Emp897", "Emp898",
"Emp899", "Emp90", "Emp900", "Emp91", "Emp918", "Emp92", "Emp93",
"Emp934", "Emp935", "Emp936", "Emp94", "Emp944", "Emp945", "Emp95",
"Emp955", "Emp96", "Emp967", "Emp968", "Emp969", "Emp97", "Emp970",
"Emp971", "Emp978", "Emp98", "Emp981", "Emp99", "Emp995", "Emp996",
"Emp997", "Emp998", "Emp999"), class = "factor"), S2 = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"),
Strata2 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("AVD1", "AVD2", "AVD3",
"AVD4"), class = "factor"), Dag = c(373, 87, 80, 73, 73,
71, 69, 69, 3, 3, 16, 59, 45, 39, 39, 148, 360, 14, 10, 9,
373, 360, 360, 360, 360, 360, 360, 360, 373, 349, 357, 15,
99, 191, 91, 94, 105, 205, 235, 263, 263, 263, 263, 264,
346, 346, 346, 346, 346, 346, 346, 346, 346, 181, 303, 0,
35, 57, 98, 257, 295, 296, 339, 339, 339, 339, 339, 339,
339, 336, 78, 296, 332, 332, 145, 312, 312, 140, 311, 311,
180, 113, 137, 163, 163, 172, 182, 222, 222, 222, 222, 222,
222, 304, 304, 304, 304, 304, 304, 304, 304, 304, 303, 214,
302, 28, 43, 51, 52, 69, 69, 74, 144, 172, 288, 297, 297,
297, 297, 297, 297, 297, 297, 297, 297, 297, 297, 297, 297,
297, 269, 297, 297, 297, 297, 297, 297, 297, 297, 297, 297,
166, 36, 134, 162, 290, 290, 290, 290, 290, 290, 290, 290,
290, 290, 290, 290, 290, 290, 290, 290, 290, 290, 290, 290,
0, 31, 31, 49, 58, 60, 90, 147, 156, 157, 179, 283, 283,
283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
373, 82, 237, 281, 29, 67, 132, 143, 143, 193, 193, 194,
224, 233, 276, 328, 276, 276, 276, 276, 276, 276, 276, 276,
276, 276, 371, 46, 158, 269, 269, 269, 269, 269, 269, 266,
11, 183, 262, 262, 373, 93, 7, 9, 40, 55, 180, 180, 180,
180, 180, 180, 180, 180, 180, 220, 373, 373, 373, 373, 373,
373, 373, 373, 373, 373, 373, 373, 373, 373, 373, 373, 373,
373, 373, 373, 180, 180, 180, 180, 180, 367, 367, 367, 367,
367, 85, 277, 360, 353, 353, 353, 353, 353, 353, 184, 346,
346, 346, 150, 158, 181, 343, 343, 343, 343, 343, 343, 343,
343, 343, 343, 343, 343, 343, 343, 343, 343, 343, 343, 343,
144, 144, 179, 339, 339, 339, 339, 339, 339, 339, 335, 332,
332, 332, 81, 325, 325, 325, 324, 155, 241, 241, 325, 333,
360, 373, 373, 205, 350, 367, 367, 191, 89, 86, 128, 217,
360, 360, 323, 80, 350, 214, 305, 346, 346, 344, 181, 343,
343, 343, 343, 207, 339, 287, 335, 335, 335, 106, 200, 332,
329, 50, 115, 224, 224, 266, 311, 311, 309, 172, 203, 225,
293, 304, 304, 304, 304, 304, 302, 199, 109, 297, 297, 297,
297, 297, 245, 296, 255, 295, 109, 290, 290, 290, 289, 171,
128, 283, 283, 233, 281, 87, 280, 279, 274, 193, 193, 133,
199, 261, 98, 223, 126, 255, 254, 204, 253, 253, 253, 253,
248, 247, 244, 241, 241, 241, 106, 238, 72, 170, 183, 234,
234, 234, 234, 234, 234, 234, 234, 233, 43, 69, 227, 226,
94, 223, 119, 249, 150, 371, 367, 367, 367, 367, 190, 367,
367, 228, 360, 360, 358, 358, 103, 345, 345, 273, 343, 338,
337, 332, 13, 33, 43, 49, 139, 139, 139, 139, 139, 139, 237,
316, 316, 316, 218, 304, 304, 304, 300, 297, 297, 281, 281,
281, 281, 107, 281, 214, 281, 267, 266, 260, 253, 253, 248,
244, 105, 234, 234, 162, 234, 230, 227, 225, 223, 223, 223,
222, 222, 222, 222, 220, 212, 177, 206, 203, 196, 192, 192,
192, 192, 192, 192, 185, 178, 178, 178, 171, 171, 161, 64,
144, 46, 136, 95, 108, 100, 87, 87, 87, 87, 87, 80, 80, 80,
80, 78, 60, 73, 73, 73, 70, 69, 69, 69, 69, 69, 66, 59, 42,
24, 8, 8, 3, 2)), row.names = c(NA, -586L), class = c("tbl_df",
"tbl", "data.frame"))
答: 暂无答案
评论
dput(SUR231109)
dput(head(SUR231109, 20))
survfit(Surv(Dag, as.numeric(S2)) ~ Strata2, data = SUR231109)