如何将 Y 轴上的绘图与绘图网格对齐 0?

How align plots by 0 on Y axis with plot grid?

提问人:Antonio Manco 提问时间:10/24/2019 最后编辑:Z.LinAntonio Manco 更新时间:10/30/2019 访问量:283

问:

我有 3 个不同比例的图,我想将它们对齐 0。 我试过玩 in,但没有结果。alignplot_grid

三个不同图的数据帧:

1

higherperiod=structure(list(phen = c("GS0", "GS1", "GS2", "GS3", "H", "GS0", 
"GS1", "GS2", "GS3", "H", "GS0", "GS1", "GS2", "GS3", "H"), var = c("mz33_flux", 
"mz33_flux", "mz33_flux", "mz33_flux", "mz33_flux", "mz45_flux", 
"mz45_flux", "mz45_flux", "mz45_flux", "mz45_flux", "mz137_flux", 
"mz137_flux", "mz137_flux", "mz137_flux", "mz137_flux"), value = c(-0.0201807203084833, 
0.00699548966597077, 0.2982090471597, 0.763140160427808, 0.0115715254237288, 
-0.00141967461669506, 0.0216389158168574, 0.152685557877813, 
0.0861748924731184, 0.00783050847457625, -0.0568113340318524, 
-0.0283260888657648, 0.0584874208715596, -0.0014408875, -0.0199876076811594
), err = c(0.00891612382048675, 0.00865982415221607, 0.0261407868072828, 
0.150893410160645, 0.000915642610907682, 0.00313669333464331, 
0.00539139343017679, 0.0109634891854869, 0.0244123650545713, 
0.000586325133571454, 0.0618423495252825, 0.0290907608410913, 
0.0405039109957796, 0.0135552560862062, 0.0016406585376453), 
    tot = c(0.104295388186188, NA, NA, NA, NA, 0.0462282825845532, 
    NA, NA, NA, NA, -0.0152536834035828, NA, NA, NA, NA)), row.names = c(6L, 
7L, 8L, 9L, 10L, 21L, 22L, 23L, 24L, 25L, 106L, 107L, 108L, 109L, 
110L), class = "data.frame") 

2

middleperiod=structure(list(phen = c("GS0", "GS1", "GS2", "GS3", "H", "GS0", 
"GS1", "GS2", "GS3", "H", "GS0", "GS1", "GS2", "GS3", "H", "GS0", 
"GS1", "GS2", "GS3", "H"), var = c("mz47_flux", "mz47_flux", 
"mz47_flux", "mz47_flux", "mz47_flux", "mz59_flux", "mz59_flux", 
"mz59_flux", "mz59_flux", "mz59_flux", "mz61_flux", "mz61_flux", 
"mz61_flux", "mz61_flux", "mz61_flux", "mz69_flux", "mz69_flux", 
"mz69_flux", "mz69_flux", "mz69_flux"), value = c(0.00321274882747069, 
-0.000643201705862667, 0.0243593290460879, 0.0349870967741935, 
0.00875693502824857, 0.00482035695142378, -0.00353965563598759, 
0.0275966956055734, -0.00348043010752689, -0.000620290395480228, 
-0.000315081786912752, 0.00159501955440415, 0.0094602285101822, 
0.0286145161290322, 0.000502053418803419, 0.00148408262008734, 
0.00234769254658385, 0.00983096248660236, 0.0150233333333333, 
-0.00391782485875705), err = c(0.00263879547828413, 0.0028541449123107, 
0.00811068959122311, 0.0220314197658351, 0.00079136625093948, 
0.00296923961006679, 0.0052170248712633, 0.00508938680657341, 
0.0204694740104851, 0.000721653962440168, 0.00129596725971262, 
0.00199557392661037, 0.00468345194254694, 0.009973392065427, 
0.000355559839113475, 0.00116104692269852, 0.00305328555952633, 
0.00184122489127936, 0.00907852219101064, 0.000270910235959759
), tot = c(0.00969127634163261, NA, NA, NA, NA, 0.00676876895687063, 
NA, NA, NA, NA, 0.00393784592257415, NA, NA, NA, NA, 0.00334178608430675, 
NA, NA, NA, NA)), row.names = 26:45, class = "data.frame")

3

lowerperiod=structure(list(phen = c("GS0", "GS1", "GS2", "GS3", "H", "GS0", 
"GS1", "GS2", "GS3", "H"), var = c("mz99_flux", "mz99_flux", 
"mz99_flux", "mz99_flux", "mz99_flux", "mz101_flux", "mz101_flux", 
"mz101_flux", "mz101_flux", "mz101_flux"), value = c(-0.000620104717775904, 
-0.0010108935483871, 0.00111282528735632, 0.003705125, -0.00306231725146199, 
-0.000496990050251256, -0.00158667942088935, 0.00275467202572347, 
0.00294259677419355, -0.000237937853107344), err = c(0.000530108561256672, 
0.000665450652678023, 0.00102123430149931, 0.0033050927052054, 
0.000138258080980254, 0.000524645790673878, 0.00212209870609353, 
0.000619468013983048, 0.00254127441214106, 9.71415042719002e-05
), tot = c(-0.000670965097831834, NA, NA, NA, NA, 0.000205929508525576, 
NA, NA, NA, NA)), row.names = 76:85, class = "data.frame")

这三个图的代码,每个图都已经使用:facet_grid

1

voclabh=c(mz137_flux="Monoterpenes",mz33_flux="Methanol",mz45_flux="Acetaldehyde")

high=ggplot(higherperiod,aes(x=phen,y=value,group=1))+
  geom_bar(aes(x='GS2', y = tot,fill='Whole growing season'),colour="black",
           stat="identity",position='dodge', width = 5) +
  geom_errorbar(aes(ymin=value-err, ymax=value+err), width=0.2, 
                position=position_dodge(0.9),colour="black")+
  geom_line(aes(colour="Single phenological stage"), linetype="solid",size = 1)+
  geom_point(aes(colour="Single phenological stage"),shape = 21, fill='white',size = 2)+
  facet_grid(~var,scales="free_y",labeller = labeller(var=voclabh),switch = "x")+
  scale_colour_manual(values = c("black"))+
  scale_fill_manual(values = c('darkolivegreen4'))+
  scale_x_discrete(name = "Phenological stages") +
  scale_y_continuous(name = expression(bold(atop("Mean Flux",(nmol~m^bold("-2")~s^bold("-1"))))),breaks = seq(-0.25, 1 ,0.25),
                     limits=c(-0.25, 1))+ 
  theme_classic() +theme(legend.position = 'none',
                         legend.title = element_blank())+
  theme(plot.title = element_text(size = 16, family = "Tahoma", face = "bold"),
        text = element_text(size = 14, family = "Tahoma"),
        axis.title.y = element_text(face="bold",size=16),
        axis.text.y = element_text(color="black",size=16),
        axis.title.x=element_blank(), axis.text.x=element_blank(),axis.ticks.x=element_blank(),
        strip.text.x = element_text(size =  13.5, color = "black",face="bold"),
        strip.background = element_blank(), panel.spacing = unit(0, "lines"), 
        strip.placement = "outside",
        legend.text = element_text(color = "black", size = 16,face="bold"))+
  geom_hline(yintercept=0, linetype="solid", color = "black",size=1,alpha=0.9)

2

voclabm2=c(mz47_flux="Formic Acid",mz59_flux="Acetone",mz61_flux="Acetic acid",mz69_flux="Isoprene")

mid=ggplot(middleperiod,aes(x=phen,y=value,group=1))+
  geom_bar(aes(x='GS2', y = tot,fill='Whole growing season'),colour="black",
           stat="identity",position='dodge', width = 5) +
  geom_errorbar(aes(ymin=value-err, ymax=value+err), width=0.2, 
                position=position_dodge(0.9),colour="black")+
  geom_line(aes(colour="Single phenological stage"), linetype="solid",size = 1)+
  geom_point(aes(colour="Single phenological stage"),shape = 21, fill='white',size = 2)+
  facet_grid(~var,scales="free_y",labeller = labeller(var=voclabm2),switch = "x")+
  scale_colour_manual(values = c("black"))+
  scale_fill_manual(values = c('darkolivegreen4'))+
  scale_x_discrete(name = "Phenological stages") +
  scale_y_continuous(name = expression(bold(Flux~(nmol~m^bold("-2")~s^bold("-1")))),breaks = seq(-0.06, 0.06 ,0.03),
                     limits=c(-0.06, 0.06))+
  theme_classic() +theme(legend.position = 'none')+
  theme(plot.title = element_text(size = 16, family = "Tahoma", face = "bold"),
        text = element_text(size = 14, family = "Tahoma"),
        axis.title.y = element_blank(),
        axis.text.y = element_text(color="black",size=16),
        axis.title.x=element_blank(), axis.text.x=element_blank(),axis.ticks.x=element_blank(),
        strip.text.x = element_text(size =  13.5, color = "black",face="bold"),
        strip.background = element_blank(), panel.spacing = unit(0, "lines"), 
        strip.placement = "outside",
        legend.text = element_text(color = "black", size = 16))+
  geom_hline(yintercept=0, linetype="solid", color = "black",size=1,alpha=0.9)

3

voclabl=c(mz99_flux="Hexenal",mz101_flux="Hexenol")

low=ggplot(lowerperiod,aes(x=phen,y=value,group=1))+
  geom_bar(aes(x='GS2', y = tot,fill='Whole growing season'),colour="black",
           stat="identity",position='dodge', width = 5) +
  geom_errorbar(aes(ymin=value-err, ymax=value+err), width=0.2, 
                position=position_dodge(0.9),colour="black")+
  geom_line(aes(colour="Single phenological stage"), linetype="solid",size = 1)+
  geom_point(aes(colour="Single phenological stage"),shape = 21, fill='white',size = 2)+
  facet_grid(~var,scales="free_y",labeller = labeller(var=voclabl),switch = "x")+
  scale_colour_manual(values = c("black"))+
  scale_fill_manual(values = c('darkolivegreen4'))+
  scale_x_discrete(name = "Phenological stages") +
  scale_y_continuous(name = expression(bold(Flux~(nmol~m^bold("-2")~s^bold("-1")))),breaks = seq(-0.005, 0.0075,0.0025),
                     limits=c(-0.005, 0.0075),labels=sprintf("%.2f",y))+
  theme_classic() +theme(legend.position = 'none')+
  theme(plot.title = element_text(size = 16, family = "Tahoma", face = "bold"),
        text = element_text(size = 14, family = "Tahoma"),
        axis.title.y = element_blank(),
        axis.text.y = element_text(color="black",size=16),
        axis.title.x=element_blank(), axis.text.x=element_blank(),axis.ticks.x=element_blank(),
        strip.text.x = element_text(size =  13.5, color = "black",face="bold"),
        strip.background = element_blank(), panel.spacing = unit(0, "lines"), 
        strip.placement = "outside",
        legend.text = element_text(color = "black", size = 16))+
  geom_hline(yintercept=0, linetype="solid", color = "black",size=1,alpha=0.9)

将它们组合在一起的代码:

legendtot = get_legend(high + 
                        theme(legend.box = "horizontal",
                              legend.position = c(1.55, 0.4)))
totmenaplot = plot_grid(high, mid, low, legendtot, 
                        ncol = 3, align = "hv",
                        rel_widths = c(1,1,1), rel_heights = c(12,1,1))

如图所示,3 个不同图的 y 轴上的零处于不同的“高度”。

我想将所有零对齐在同一高度。是否有可能,每个 y 轴都有不同的刻度?

r ggplot2 cowplot

评论

2赞 s__ 10/24/2019
也许把你的数据放在一个数据集中,并使用设置可能会有所帮助,但最好有一些数据,也是假的,类似于你的数据来证明它。facet_wrap()scales = 'free'
0赞 Antonio Manco 10/29/2019
@s_t稍微复杂一点,我不能使用 ,因为我已经用它来制作每个图(我在数据框中将化合物分组为不同的组,因为它们具有不同的比例)。然后我将使用 .facet_wrapfacet_wrapplot_grid
0赞 Antonio Manco 10/29/2019
我分享了我的数据和代码,以帮助更好地了解我的情况。

答:

2赞 Z.Lin 10/30/2019 #1

实现所需外观的一种方法是修改每个图的 y 轴范围,以便所有三个图都具有分配给负象限与正象限的相同比例长度。

# examine y-axis limits for each plot
high$scales$scales[[4]]$limits # -0.25, 1          ratio of negative to positive is 1:4
mid$scales$scales[[4]]$limits  # -0.06, 0.06       ratio of negative to positive is 1:1
low$scales$scales[[4]]$limits  # -0.0050, 0.0075   ratio of negative to positive is 1:1.5

我们可以将比例标准化为 1:4,例如:

mid$scales$scales[[4]]$limits[2] <- abs(mid$scales$scales[[4]]$limits[1]) * 4
low$scales$scales[[4]]$limits[2] <- abs(low$scales$scales[[4]]$limits[1]) * 4

从之前重新运行该行:plot_grid

plot_grid(high, mid, low, legendtot, 
          ncol = 3, align = "hv",
          rel_widths = c(1, 1, 1), 
          rel_heights = c(12, 1, 1))

plot