提问人:ergun 提问时间:11/10/2023 更新时间:11/10/2023 访问量:14
数据集图像中的聚类和作物癌症片段
Cluster and Crop cancer segments from images of the dataset
问:
数据集分为 train、test、val,每个都有 7 种癌症亚型。我想做的是对每个图像进行聚类,并保存包含每个图像中癌症图像的重要片段。
该任务看起来像扩展数据集,我正在使用 K-Means-Clustering
data = []
label = []
path = "C:/Users/ergun/Desktop/ergunDosyalar/DERS/bilgisayarprojesi/dataset/test/"
n = 0
pb = 0
udh = 0
fea = 0
adh = 0
dcis = 0
ic = 0
IMG_SIZE = 32
for file in os.listdir(path):
if file[0]=='0':
for imgfil in os.listdir(path+file):
img=cv2.imread(path+file+'/'+imgfil)
img=cv2.resize(img,(IMG_SIZE,IMG_SIZE))
img=img.astype('float32')
n+=1
label.append("N")
data.append(img)
elif file[0]=='1':
for imgFil in os.listdir(path+file):
img=cv2.imread(path+file+'/'+imgFil)
img=cv2.resize(img,(IMG_SIZE,IMG_SIZE))
img=img.astype('float32')
pb+=1
label.append("PB")
data.append(img)
elif file[0]=='2':
for imgfil in os.listdir(path+file):
img=cv2.imread(path+file+'/'+imgfil)
img=cv2.resize(img,(IMG_SIZE,IMG_SIZE))
img=img.astype('float32')
udh+=1
label.append("UDH")
data.append(img)
elif file[0]=='3':
for imgFil in os.listdir(path+file):
img=cv2.imread(path+file+'/'+imgFil)
img=cv2.resize(img,(IMG_SIZE,IMG_SIZE))
img=img.astype('float32')
fea+=1
label.append("FEA")
data.append(img)
elif file[0]=='4':
for imgFil in os.listdir(path+file):
img=cv2.imread(path+file+'/'+imgFil)
img=cv2.resize(img,(IMG_SIZE,IMG_SIZE))
img=img.astype('float32')
adh+=1
label.append("ADH")
data.append(img)
elif file[0]=='5':
for imgfil in os.listdir(path+file):
img=cv2.imread(path+file+'/'+imgfil)
img=cv2.resize(img,(IMG_SIZE,IMG_SIZE))
img=img.astype('float32')
dcis+=1
label.append("DCIS")
data.append(img)
elif file[0]=='6':
for imgFil in os.listdir(path+file):
img=cv2.imread(path+file+'/'+imgFil)
img=cv2.resize(img,(IMG_SIZE,IMG_SIZE))
img=img.astype('float32')
ic+=1
label.append("IC")
data.append(img)
data = np.array(data)
data_label = []
for i in label:
if i=="N": data_label.append(0)
elif i=="PB" : data_label.append(1)
elif i=="UDH" : data_label.append(2)
elif i=="FEA" : data_label.append(3)
elif i=="ADH" : data_label.append(4)
elif i=="DCIS" : data_label.append(5)
elif i=="IC" : data_label.append(6)
data_label = np.array(data_label)
data = data/255.0
reshaped_data = data.reshape(len(data),-1)
kmeans = KMeans(n_clusters=2, random_state=0, n_init='auto')
clusters = kmeans.fit_predict(reshaped_data)
image_cluster = kmeans.cluster_centers_[kmeans.labels_]
#image_cluster = image_cluster.reshape(reshaped_data.shape[0], reshaped_data.shape[1])
plt.imshow(image_cluster)
plt.show()
使用包含癌症的图像段展开数据集
答: 暂无答案
评论